1,486 research outputs found

    Chiral Brownian heat pump

    Full text link
    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.Comment: Submitted to Phys. Rev. Let

    Dissipative collapse of the adiabatic piston

    Get PDF
    An adiabatic piston, separating two granular gases prepared in the same macroscopic state, is found to eventually collapse to one of the sides. This new instability is explained by a simple macroscopic theory which is furthermore in qualitative agreement with hard disk molecular dynamics.Comment: 7 pages, 5 figure

    Noise induced transition from an absorbing phase to a regime of stochastic spatiotemporal intermittency

    Get PDF
    We introduce a stochastic partial differential equation capable of reproducing the main features of spatiotemporal intermittency (STI). Additionally the model displays a noise induced transition from laminarity to the STI regime. We show by numerical simulations and a mean-field analysis that for high noise intensities the system globally evolves to a uniform absorbing phase, while for noise intensities below a critical value spatiotemporal intermittence dominates. A quantitative computation of the loci of this transition in the relevant parameter space is presented.Comment: 4 pages, 6 eps figures. Submitted to Phys. Rev. Lett. See for additional information http://imedea.uib.es

    Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators

    Full text link
    We investigate both continuous (second-order) and discontinuous (first-order) transitions to macroscopic synchronization within a single class of discrete, stochastic (globally) phase-coupled oscillators. We provide analytical and numerical evidence that the continuity of the transition depends on the coupling coefficients and, in some nonuniform populations, on the degree of quenched disorder. Hence, in a relatively simple setting this class of models exhibits the qualitative behaviors characteristic of a variety of considerably more complicated models. In addition, we study the microscopic basis of synchronization above threshold and detail the counterintuitive subtleties relating measurements of time averaged frequencies and mean field oscillations. Most notably, we observe a state of suprathreshold partial synchronization in which time-averaged frequency measurements from individual oscillators do not correspond to the frequency of macroscopic oscillations observed in the population

    Dissipation: The phase-space perspective

    Full text link
    We show, through a refinement of the work theorem, that the average dissipation, upon perturbing a Hamiltonian system arbitrarily far out of equilibrium in a transition between two canonical equilibrium states, is exactly given by =ΔF=kTD(ρρ~)=kT = -\Delta F =kT D(\rho\|\widetilde{\rho})= kT , where ρ\rho and ρ~\widetilde{\rho} are the phase space density of the system measured at the same intermediate but otherwise arbitrary point in time, for the forward and backward process. D(ρρ~)D(\rho\|\widetilde{\rho}) is the relative entropy of ρ\rho versus ρ~\widetilde{\rho}. This result also implies general inequalities, which are significantly more accurate than the second law and include, as a special case, the celebrated Landauer principle on the dissipation involved in irreversible computations.Comment: 4 pages, 3 figures (4 figure files), accepted for PR

    First order phase transition in a nonequilibrium growth process

    Full text link
    We introduce a simple continuous model for nonequilibrium surface growth. The dynamics of the system is defined by the KPZ equation with a Morse-like potential representing a short range interaction between the surface and the substrate. The mean field solution displays a non trivial phase diagram with a first order transition between a growing and a bound surface, associated with a region of coexisting phases, and a tricritical point where the transition becomes second order. Numerical simulations in 3 dimensions show quantitative agreement with mean field results, and the features of the phase space are preserved even in 2 dimensions.Comment: 7 figures, revtex, submitted to Phys. Rev.

    Providing Enhanced Social Interaction Services for Industry Exhibitors at Large Medical Conferences

    Get PDF
    Large medical conferences offer opportunities for participants to find industry exhibitors that offer products and services relevant to their professional interests. Companies often invest significant effort in promotions that encourage participants to spend time at their stand (e.g. providing free gifts, leaflets, running competitions) and register some contact details. Attendees will use the conference to find others who also share similar professional interests, as well as keep up to date with developments on products such has pharmaceuticals and medical equipment. From both perspectives, a number of improvements can be made to enhance the overall experience by using existing active RFID technology: Vendors would be able to more closely monitor the success of their promotions with statistics on the stand's visitors, as well as find more potential customers by using real-time visualizations; Participants would be able to log their social interactions, keeping an electronic history of the people they have met. The SocioPatterns project and Live Social Semantics experiments have recently demonstrated a scalable and robust infrastructure that would support these kinds of improvements. In this paper, we propose an infrastructure that provides enhanced social interaction services for vendors and participants by using small active RFID badges worn by attendees and attached to fixed locations

    Het grote hoe, wat, waar en waarom over zwarte gaten

    Get PDF
    Item does not contain fulltext29 september 201

    Parametric phase transition in one dimension

    Full text link
    We calculate analytically the phase boundary for a nonequilibrium phase transition in a one-dimensional array of coupled, overdamped parametric harmonic oscillators in the limit of strong and weak spatial coupling. Our results show that the transition is reentrant with respect to the spatial coupling in agreement with the prediction of the mean field theory.Comment: to appear in Europhysics letter
    corecore