58 research outputs found

    Aspects of the FM Kondo Model: From Unbiased MC Simulations to Back-of-an-Envelope Explanations

    Full text link
    Effective models are derived from the ferromagnetic Kondo lattice model with classical corespins, which greatly reduce the numerical effort. Results for these models are presented. They indicate that double exchange gives the correct order of magnitude and the correct doping dependence of the Curie temperature. Furthermore, we find that the jump in the particle density previously interpreted as phase separation is rather explained by ferromagnetic polarons.Comment: Proceedings of Wandlitz Days of Magnetism 200

    Six weeks Use of a Wearable Soft-robotic Glove During ADL:Preliminary Results of Ongoing Clinical Study

    Get PDF
    In this ongoing study, an assistive wearable soft-robotic glove, named Carbonhand, is tested at home for 6 weeks by subjects with decreased handgrip strength to receive a first insight in the therapeutic effect of using this assistive grip-supporting glove during ADLs. Preliminary results of the first 13 participants showed that participants appreciated use of the glove to assist them with daily life activities. Even more, grip strength without glove improved and functional performance showed increases as well. These preliminary findings hold promise for observing a clinical effect of using the soft-robotic glove as assistance in ADLs upon completion of data collection

    Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial

    Get PDF
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∌200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales.Toxicolog

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O →\to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1−x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    A search for radio emission from double-neutron star merger GW190425 using Apertif

    Get PDF
    ContextDetection of the electromagnetic emission from coalescing binary neutron stars (BNS) is important for understanding the merger and afterglow. Aims. We present a search for a radio counterpart to the gravitational-wave (GW) source GW190425, a BNS merger, using Apertif on the Westerbork Synthesis Radio Telescope (WSRT). MethodsWe observed a field of high probability in the associated localisation region for three epochs at ΔT\ue2€., =\ue2€., 68, 90, 109 d post merger. We identified all sources that exhibit flux variations consistent with the expected afterglow emission of GW190425. We also looked for possible transients. These are sources that are only present in one epoch. In addition, we quantified our ability to search for radio afterglows in the fourth and future observing runs of the GW detector network using Monte Carlo simulations. ResultsWe found 25 afterglow candidates based on their variability. None of these could be associated with a possible host galaxy at the luminosity distance of GW190425. We also found 55 transient afterglow candidates that were only detected in one epoch. All of these candidates turned out to be image artefacts. In the fourth observing run, we predict that up to three afterglows will be detectable by Apertif. ConclusionsWhile we did not find a source related to the afterglow emission of GW190425, the search validates our methods for future searches of radio afterglows

    Uniform hopping approach to the FM Kondo Model at finite temperature

    Full text link
    We study the ferromagnetic Kondo model with classical corespins via unbiased Monte-Carlo simulations and derive a simplified model for the treatment of the corespins at any temperature. Our simplified model captures the main aspects of the Kondo model and can easily be evaluated both numerically and analytically. It provides a better qualitative understanding of the physical features of the Kondo model and rationalizes the Monte-Carlo results, including the spectral density A_k(omega) of a 1D chain with nearest neighbor Coulomb repulsion. By calculating the specific heat and the susceptibility of systems up to size 16^3, we determine the Curie temperature of the 3D one-orbital double-exchange model, which agrees with experimental values.Comment: 11 pages, 9 figures, RevTex4, additional references cite

    Magnetic, orbital and charge ordering in the electron-doped manganites

    Full text link
    The three dimensional perovskite manganites in the range of hole-doping x>0.5x > 0.5 are studied in detail using a double exchange model with degenerate ege_g orbitals including intra- and inter-orbital correlations and near-neighbour Coulomb repulsion. We show that such a model captures the observed phase diagram and orbital-ordering in the intermediate to large band-width regime. It is argued that the Jahn-Teller effect, considered to be crucial for the region x<0.5x<0.5, does not play a major role in this region, particularly for systems with moderate to large band-width. The anisotropic hopping across the degenerate ege_g orbitals are crucial in understanding the ground state phases of this region, an observation emphasized earlier by Brink and Khomskii. Based on calculations using a realistic limit of finite Hund's coupling, we show that the inclusion of interactions stabilizes th e C-phase, the antiferromagnetic metallic A-phase moves closer to x=0.5x=0.5 while th e ferromagnetic phase shrinks in agreement with recent observations. The charge ordering close to x=0.5x=0.5 and the effect of reduction of band-width are also outlined. The effect of disorder and the possibility of inhomogeneous mixture of competing states have been discussed.Comment: 42 pages, 16 figure
    • 

    corecore