254 research outputs found

    Predicted values for the forced expiratory flow adjusted for forced vital capacity, a descriptive study

    Get PDF
    Background: The forced expiratory flows (FEFs) towards the end of the expiration may be more sensitive in detecting peripheral airways obstruction compared to the forced expiratory volume in 1 s and forced vital capacity (FVC). However, they are highly variable. A partial solution is to adjust the FEFs for FVC (FEF/FVC). Here we provide reference equations for these adjusted FEFs at 25%, 50%, 75% and 25-75% of FVC, which are currently lacking. Methods: We included pulmonary healthy, never-smoker adults; 14 472 subjects from Lifelines, a biobank for health research, and 338 subjects from the department's control cohorts (NORM and Fiddle). Reference equations were obtained by linear regression on 80% of the Lifelines dataset and validated on the remaining data. The best model was defined as the one with the highest adjusted R2-value. The difference in variability between adjusted and unadjusted FEFs was evaluated using the coefficient of variation. Results: For all adjusted FEFs, the best model contained age, height and weight. The adjustment improved the coefficient of variation of the FEF75 from 39% to 36% and from 43% to 40%, respectively, in males and females. The highest percentage of explained variance by the reference equation was obtained for FEF75/FVC, 32%-38% for males, and 41%-46% for females, depending on the validation set. Conclusion: We developed reference equations for FVC-adjusted FEF values. We demonstrated minimally yet significantly improved variability. Future studies in obstructive airway diseases should demonstrate whether it is worthwhile to use these (predicted) adjusted FEF values

    Sputum microbiome profiling in COPD:beyond singular pathogen detection

    Get PDF
    Culture-independent microbial sequencing techniques have revealed that the respiratory tract harbours a complex microbiome not detectable by conventional culturing methods. The contribution of the microbiome to chronic obstructive pulmonary disease (COPD) pathobiology and the potential for microbiome-based clinical biomarkers in COPD are still in the early phases of investigation. Sputum is an easily obtainable sample and has provided a wealth of information on COPD pathobiology, and thus has been a preferred sample type for microbiome studies. Although the sputum microbiome likely reflects the respiratory microbiome only in part, there is increasing evidence that microbial community structure and diversity are associated with disease severity and clinical outcomes, both in stable COPD and during the exacerbations. Current evidence has been limited to mainly cross-sectional studies using 16S rRNA gene sequencing, attempting to answer the question 'who is there?' Longitudinal studies using standardised protocols are needed to answer outstanding questions including differences between sputum sampling techniques. Further, with advancing technologies, microbiome studies are shifting beyond the examination of the 16S rRNA gene, to include whole metagenome and metatranscriptome sequencing, as well as metabolome characterisation. Despite being technically more challenging, whole-genome profiling and metabolomics can address the questions 'what can they do?' and 'what are they doing?' This review provides an overview of the basic principles of high-throughput microbiome sequencing techniques, current literature on sputum microbiome profiling in COPD, and a discussion of the associated limitations and future perspectives

    Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations:a systematic review and meta-analysis

    Get PDF
    OBJECTIVE: Research on computed tomography (CT) bronchial parameter measurements shows that there are conflicting results on the values for bronchial parameters in the never-smoking, smoking, asthma, and chronic obstructive pulmonary disease (COPD) populations. This review assesses the current CT methods for obtaining bronchial wall parameters and their comparison between populations. METHODS: A systematic review of MEDLINE and Embase was conducted following PRISMA guidelines (last search date 25th October 2021). Methodology data was collected and summarised. Values of percentage wall area (WA%), wall thickness (WT), summary airway measure (Pi10), and luminal area (Ai) were pooled and compared between populations. RESULTS: A total of 169 articles were included for methodologic review; 66 of these were included for meta-analysis. Most measurements were obtained from multiplanar reconstructions of segmented airways (93 of 169 articles), using various tools and algorithms; third generation airways in the upper and lower lobes were most frequently studied. COPD (12,746) and smoking (15,092) populations were largest across studies and mostly consisted of men (median 64.4%, IQR 61.5 - 66.1%). There were significant differences between populations; the largest WA% was found in COPD (mean SD 62.93 ± 7.41%, n = 6,045), and the asthma population had the largest Pi10 (4.03 ± 0.27 mm, n = 442). Ai normalised to body surface area (Ai/BSA) (12.46 ± 4 mm2, n = 134) was largest in the never-smoking population. CONCLUSIONS: Studies on CT-derived bronchial parameter measurements are heterogenous in methodology and population, resulting in challenges to compare outcomes between studies. Significant differences between populations exist for several parameters, most notably in the wall area percentage; however, there is a large overlap in their ranges. KEY POINTS: • Diverse methodology in measuring airways contributes to overlap in ranges of bronchial parameters among the never-smoking, smoking, COPD, and asthma populations. • The combined number of never-smoking participants in studies is low, limiting insight into this population and the impact of participant characteristics on bronchial parameters. • Wall area percent of the right upper lobe apical segment is the most studied (87 articles) and differentiates all except smoking vs asthma populations

    The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs

    Get PDF
    BACKGROUND: Asthma is a chronic respiratory disease in which the nervous system plays a central role. Sensory nerve activation, amongst others via Transient Receptor Potential Ankyrin 1 (TRPA1) channels, contributes to asthma characteristics including cough, bronchoconstriction, mucus secretion, airway hyperresponsiveness (AHR) and inflammation. In the current study, we evaluated the efficacy of the novel TRPA1 antagonist BI01305834 against AHR and inflammation in guinea-pig models of asthma. METHODS: First, a pilot study was performed in a guinea-pig model of allergic asthma to find the optimal dose of BI01305834. Next, the effect of BI01305834 on (1) AHR to inhaled histamine after the early and late asthmatic reaction (EAR and LAR), (2) magnitude of EAR and LAR and (3) airway inflammation was assessed. Precision-cut lung slices and trachea strips were used to investigate the bronchoprotective and bronchodilating-effect of BI01305834. Statistical evaluation of differences of in vivo data was performed using a Mann-Whitney U test or One-way nonparametric Kruskal-Wallis ANOVA, for ex vivo data One- or Two-way ANOVA was used, all with Dunnett's post-hoc test where appropriate. RESULTS: A dose of 1 mg/kg BI01305834 was selected based on AHR and exposure data in blood samples from the pilot study. In the subsequent study, 1 mg/kg BI01305834 inhibited AHR after the EAR, and the development of EAR and LAR elicited by ovalbumin in ovalbumin-sensitized guinea pigs. BI01305834 did not inhibit allergen-induced total and differential cells in the lavage fluid and interleukin-13 gene expression in lung homogenates. Furthermore, BI01305834 was able to inhibit allergen and histamine-induced airway narrowing in guinea-pig lung slices, without affecting histamine release, and reverse allergen-induced bronchoconstriction in guinea-pig trachea strips. CONCLUSIONS: TRPA1 inhibition protects against AHR and the EAR and LAR in vivo and allergen and histamine-induced airway narrowing ex vivo, and reverses allergen-induced bronchoconstriction independently of inflammation. This effect was partially dependent upon histamine, suggesting a neuronal and possible non-neuronal role for TRPA1 in allergen-induced bronchoconstriction

    Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts

    Get PDF
    Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3

    Current-Smoking alters Gene Expression and DNA Methylation in the Nasal Epithelium of Asthmatics

    Get PDF
    Current-smoking contributes to worsened asthma prognosis, more severe symptoms and limits the beneficial effects of corticosteroids. As the nasal epithelium can reflect smoking-induced changes in the lower airways, it is a relevant source to investigate changes in gene expression and DNA methylation. This study explores gene expression and DNA methylation changes in current and ex-smokers with asthma. Matched gene expression and epigenome-wide DNA methylation samples collected from nasal brushings of 55 patients enrolled in a clinical trial investigation of current and ex-smoker asthma patients were analysed. Differential gene expression and DNA methylation analyses were conducted comparing current- vs ex-smokers. Expression quantitative trait methylation (eQTM) analysis was completed to explore smoking relevant genes by CpG sites that differ between current and ex-smokers. To investigate the relevance of the smoking-associated DNA methylation changes for the lower airways, significant CpG sites were explored in bronchial biopsies from patients who had stopped smoking. 809 genes and 18,814 CpG sites were differentially associated with current-smoking in the nose. The cis-eQTM analysis uncovered 171 CpG sites whose methylation status associated with smoking-related gene expression, including AHRR, ALDH3A1, CYP1A1 and CYP1B1. Methylation status of CpG sites altered by current-smoking reversed with one-year smoking cessation. We confirm current-smoking alters epigenetic patterns and affects gene expression in the nasal epithelium of asthma patients, which is partially reversible in bronhcial biopsies after smoking cessation. We demonstrate the ability to discern molecular changes in the nasal epithelium, presenting this as a tool in future investigations into disease-relevant effects of tobacco smoke
    • …
    corecore