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ABSTRACT  Multiple-breath nitrogen washout (MBNW) and its clinical parameter lung clearance index
(LCI) are gaining increasing attention for the assessment of small airway function. Measurement of LCI relies
on accurate assessment of functional residual capacity (FRC). The EasyOne Pro LAB (ndd) and Exhalyzer D
(EM) are two commercially available MBNW devices. The aim of the study was to compare these two devices in
vitro and in vivo in healthy subjects with regard to FRC, LCI and secondary outcome parameters and to relate
FRCypnw to FRC measured by body plethysmography (pleth) and helium dilution technique. MBNW
measurements were performed using a lung model (FRC between 500 and 4000 mL) in vitro and in 38 subjects
aged 6-65 years followed by helium dilution and pleth in vivo using fixed and relaxed breathing techniques. In
vitro accuracy within 5% of lung model FRC was 67.3% for ndd, FRC was >5% higher for EM in all tests. In
vivo, FRCpjep, ranged from 1.2 to 5.6 L. Mean differences (limits of agreement) between FRC,jet, and FRCypaw
were —7.0%, (—23.2 to 92%) and 5.7% (—11.2 to 22.6%) using ndd and EM, respectively. FRC4q was
consistently lower than FRCgyy (—11.8% (—25.6 to 2%)). LCI was comparable between the two devices (—1.3%
(—21.9 to 19.3%)). There was a difference of >10 % in LCI in 12 of 38 subjects. Using the most recent software
updates, both devices show relevant deviations in FRC measurement both in vitro and in vivo and individual
differences in LCI in a significant proportion of subjects. The devices are therefore not interchangeable.
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MBNW measurements with the Exhalyzer D and EasyOne Pro LAB cannot be used
interchangeably for FRC and LCI measurements. FRC measured on both devices showed
deviations from in vitro and in vivo measurements. https:/bit.ly/2xyyUu]
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Introduction

Lung diseases such as cystic fibrosis (CF) and asthma may have their onset in the small airways [1-3].
Therefore, considerable interest exists in measuring small airways dysfunction, using the multiple-breath
nitrogen washout (MBNW) technique. The lung clearance index (LCI) is its most straightforward outcome
parameter. The LCI has increasingly gained attention as a sensitive marker of small airways dysfunction
and ventilation inhomogeneity in patients with lung disease, especially in CF [4-10]. The reliability of the
LCI depends directly on correct measurement of functional residual capacity (FRC), because LCI is
calculated as the number of lung volume turnovers (cumulative exhaled volume/FRC) required to lower
the tracer gas concentration to 1/40 of the initial concentration [11].

Currently, two commercially available devices are used for MBNW using N, as an inert tracer gas: the
EasyOne Pro LAB (“ndd”; ndd Medical Technologies, Zurich, Switzerland) and the Exhalyzer D (“EM”;
Eco Medics AG, Duernten, Switzerland). In previous studies, these devices have been compared in vitro
using a lung model and to other techniques to measure FRC such as the helium dilution technique
(FRCyye) and body plethysmography (FRCpen) [12-19]. The results from these studies suggest that the
ndd measures significantly lower FRC values compared to body plethysmography, whereas EM measures
similar to significantly higher FRC values compared to body plethysmography. Limitations of these studies
were: use of only one of the two devices [12, 13, 15, 16], inclusion of a limited range of FRC by measuring
either children or adults and/or use of an old software version of the ndd [14, 16-20]. Therefore, in this
study we directly compared both devices with each other with the most recent software version of ndd and
included both healthy children and adults.

The effect of breathing pattern on LCI and FRC is not well examined. Relaxed steady tidal breathing has
historically been used for measuring the LCL. To derive other indices, such as parameters derived from
(normalised) slope III (SnlII) analysis to distinguish between global ventilation inhomogeneity and specific
location of ventilation inhomogeneity, a fixed tidal volume is advocated in the European Respiratory Society
(ERS)/American Thoracic Society (ATS) statement [11, 21-23]. A tidal volume (V1) between 950 and
1400 mLkg ™" for adults and between 10 and 15 mLkg ™" for children is mandatory as a compromise between
maintaining physiological breathing and having sufficient phase III to gain SnIII data [11]. It is not exactly
known how these different breathing patterns influence the outcome of FRC and LCI. Previous studies that
investigated the influence of the breathing pattern on MBNW outcome parameters did not use the volumes
recommended by the ATS/ERS statement, and none investigated both adults and children [24, 25].

The aim of the present study was to compare two currently available commercial MBNW devices (ndd and
EM), using FRC and LCI as the main outcome parameters in healthy volunteers aged 6-65 years. Additionally,
we evaluated the influence of fixed and relaxed tidal breathing patterns on FRC and LCI results.

Methods
Detailed description of randomisation, recruitment and inclusion criteria, study protocol, software
versions, power calculation and statistical analysis are provided in the online supplementary material.

Study design
This is a cross-sectional randomised study of in vitro and in vivo MBNW measurements.

In vitro MBNW testing

A lung model setup (Soloplex, Tidaholm, Sweden) based on the model used by SINGER et al. [13] was used
to conduct in vitro experiments. With one modification: continuous CO, was not added to the model. To
simulate different breathing patterns, a positive airway pressure ventilator with volume-controlled mode
(Breas PV 501, Breas Medical AB, Molnlycke, Sweden) was connected to the lung model. All
measurements were performed by two operators (AZ and LR). To compare lung volume ranges and
breathing patterns observed in subjects aged 6-65 years the target FRC of the lung model was set between
500 and 4000 mL, with a respiratory rate between 10 and 30 per min and V1 between 300 and 1000 mL.
All tests were performed in triplicate, in randomised order of target FRC on both devices.

In vivo MBNW testing

Setting and participants

Healthy volunteers aged between 6 and 65 years were enrolled between April 2016 and April 2017 to
conduct MBNW at the lung function department of the Beatrix Children’s” Hospital, University Medical
Centre Groningen (Groningen, the Netherlands). The study was approved by the local ethics committee
(METc 2015.417). Written informed (parental) consent from all participants was obtained.

https://doi.org/10.1183/23120541.00247-2019 2
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Protocol

The MBNW devices used were the ndd and EM devices. N, was used as a tracer gas. Randomisation took
place for the order of the MBNW device used (ndd or EM) and the pattern of breathing. Breathing pattern
(fixed or relaxed) was defined in agreement with the ATS/ERS consensus statement (figure 1) [11].

After the MBNW measurements lung function tests were performed in a fixed order: helium dilution
technique (MasterScreen PFT System, CareFusion, USA), spirometry (MasterScreen pneumo-spirometer,
CareFusion, USA) and pleth (MasterScreen Body Plethysmography, CareFusion, USA) (figure 1). All tests
were performed according to the ATS/ERS guidelines and consensus statement [11, 26, 27].

Acceptable limits and statistical analysis

Minimal within-test repeatability of FRC measured by He, pleth and MBNW is defined as 10%, 5% and
10%, respectively [11, 27]. FRC measured using pleth includes the physiological amount of trapped gas,
therefore FRC may be up to 10% higher than FRC measured by gas washout [28, 29]. Taking these two
facts into account, we defined acceptable differences between FRCypnw and FRCpjeq, as within the limits
of —10% to 5%, and FRCypnw and FRCyy, as within the limits of —10 and 10%.

Statistical analysis was performed using SPSS 23.0 for windows (IBM SPSS Statistics, version 23.0,
Armonk, NY, USA). Statistical significance was set at p<0.05.

Accuracy of in vitro data was assessed according to the consensus statement: at least 95% of measured
FRC should be within 5% of the lung model FRC [11]. The agreement between the devices, and different

Day 1:
Questionnaire
Measuring height and weight

v

Two-way randomisation:
1) Breathing protocol: relaxed/fixed
2) Device: ndd/EM

A\ v v v
Group A Group B Group C Group D
1) Relaxed 1) Relaxed 1) Fixed 1) Fixed
2) 1st ndd 2) 1st EM 2) 1st ndd 2) 1st EM
2nd EM 2nd ndd 2nd EM 2nd ndd
[ ]
v
After MBNW in set order:
Helium dilution test
Spirometry
Body plethysmography
Day 2:
Short questionnaire
Switch of breathing protocol and start of
device
A\ v : v v
Group A Group B Group C Group D
1) Fixed 1) Fixed 1) Relaxed 1) Relaxed
2) 1st EM 2) 1st ndd 2) 1st EM 2) 1st ndd
2nd ndd 2nd EM 2nd ndd 2nd EM

[ |
v
After MBNW in set order:
Helium dilution test
Spirometry
Body plethysmography

FIGURE 1 Flow diagram study design. Relaxed: relaxed tidal breathing; Fixed: fixed tidal breathing (adults
950-1400 mL, children 10-15 mL~kg‘1]; EM: Exhalyzer D; ndd: EasyOne Pro LAB; MBNW: multiple-breath
nitrogen washout.
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breathing manoeuvres was assessed using the method by Branp anp Arrman [30]. According to the
consensus statement on MBNW, relaxed tidal breathing was used to compare the FRC, 49 and FRCgy; with
the other lung function tests that measure FRC [11].

Results

In vitro MBNW testing

Thirty-four tests, each in triplicate, were performed per MBNW device. Mean difference between FRC
measured using ndd compared to FRCiyngmodel Was 4% (p=0.78, limits of agreement of —8.5 to 12.7%).
The accuracy rate of 5% between FRC,qa and FRCingmoder Was reached in 67.6%. For FRCgy, mean
difference was 14.3% (p<0.01) with limits of agreement of —2.2 to 30.8% (figure 2, table 1). All
FRClungmodel measurements with EM were >5% higher and did not reach the defined accuracy rate. The in
vitro coefficient of variation of FRC was 0.7% using the ndd and 1.2% using the EM.

In vivo MBNW testing

A total of 44 healthy volunteers were enrolled between April 2016 and May 2017; 23 children (6-17 years)
and 21 adults (18-65 years). Five children, aged 6 to 10 years, were excluded: four were not able to
perform acceptable MBNW tests and one showed signs of obstruction on spirometry and had a
bronchodilator response of 18%, without respiratory complaints. One adult was not able to perform the
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FIGURE 2 Bland-Altman plots of in vitro MBNW FRC measurements of a) ndd (EasyOne Pro Lab) and lung model and b) EM (Exhalyzer D) and
lung model in absolute values and ¢} ndd and lung model and d) EM and lung model in relative values. Data are plotted as measured FRC minus
lung model FRC, expressed as absolute and relative difference versus mean of measured and lung model FRC values. The middle line represents
the mean difference and the upper and lower (dashed) lines the upper and lower limits of agreement (mean difference + 1.96 SD).
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TABLE 1 Mean difference between measured FRC and FRC lung model

FRC lung model ndd EM

Al Absolute —4 (-34-26) 212 (166-259)
Relative 2.1 (0.2-3.9) 14.3 (11.4-17.2)

<1000 mL Absolute 59 (35-84) 100 (71-128)
Relative 7.6 (4.7-10.5) 20.0 (12.5-27.5)

>1000 mL Absolute -39 (-76--2) 274 (219-329)
Relative —-1.0 (-2.2-0.3) 11.2 (9.8-12.6)

Data are presented as mean (95% Cl). Absolute measurements are in millilitres, relative in percentage.
FRC: functional residual capacity; ndd: EasyOne Pro LAB; EM: Exhalyzer D.

fixed tidal breathing protocol and was excluded. After exclusion, a total of 38 participants were eligible for
analysis, their characteristics are outlined in table 2.

Comparison of ndd and EM: FRC, LCI and secondary outcome parameters
FRC,,qq Was significantly lower than FRCgy;, mean difference —11.8% (p<0.01, limits of agreement —25.6
to 2%) (figure 3, table 3).

The LCI was comparable between the two devices, mean difference —1.3% (p=0.31, limits of agreement
—21.9 to 19.3%) (figure 3). LCI differed >10% in seven (39%) children and five (25%) adults between the
two devices. Within-test repeatability of LCI was good in both devices; mean coefficient of variation (sp)
4.2 (3.1) using ndd and 3.8 (2.7) using EM.

Cumulative expired volume (CEV) was lower for both, children and adults when measured by ndd in
comparison to EM. Respiratory rate was significantly higher using ndd in both groups, Vi was
significantly lower in children on ndd compared to EM and a trend was seen towards a lower V-kg™' in
children on ndd (table 3).

Comparison of FRC measurements between MBNW, body plethysmography and helium

dilution technique

FRC,4a was significantly lower than FRCs with a mean difference of —7.0% (p<0.01 limits of
agreement —23.2 to 9.2%) (table 4, figure S1).

Mean difference between FRCgy and FRCpjeq, Was 5.7% (p<0.01, limits of agreement —11.2 to 22.6%)
(figure S1). FRCgy; did not significantly differ from FRCjje, in children in contrast to adults (table 3).

Mean FRC,44 and FRCy, did not significantly differ, mean difference 2.1% (p=0.46, limits of agreement
—17.9 to 22.1%) (table 3. figure S1). FRCgy; was significantly higher compared to FRCy, mean difference
16.3% (p<0.01, limits of agreement —10.6 to 43.2) (figure 3, table 3).

TABLE 2 Patient characteristics

Child (n=18) Adult (n=20)
Age years 12.5 (6.1-17.1) 37.5 (18.8-64.9)
Male 7 (38.9) 12 (60)
Height cm 156.8 (124-184) 179.9 (167-192)
Weight kg 47.6 (25-78) 74.1 (53-103)
FEV, 0.08 (—2.0-1.5) 0.17 (—1.6-1.3)
FVC 0.13 (—2.2-1.4) 0.17 (—1.4-1.7)
FEV,/FVC —0.16 (-2.0-1.2) —0.07 (-1.6-1.3)
MEF 5 -0.07 (-1.2-1.2) 0.24 (—1.3-1.4)
FRCpteth L 2.1 (1.2-4.2) 3.8 (2.8-5.6)
FRCye L* 1.9 (1.0-3.8) 3.6 (2.7-4.7)

Data are presented as mean [range) or n (%). FEV,, FVC, FEV,/FVC and MEF,5 are expressed as z scores.
#.n=17; 1 child was not able to perform He test due to technical problems. FEV;: forced expiratory volume
in 1 's; FVC: forced vital capacity; MEF;5: maximal expiratory flow at 25% of vital capacity; FRC: functional
residual capacity; pleth: body plethysmography; He: helium dilution technique.

https://doi.org/10.1183/23120541.00247-2019 5
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FIGURE 3 Bland-Altman plots of a) FRC (functional residual capacity) and b) LCI (lung clearance index) agreement between ndd (EasyOne Pro
Lab) and EM (Exhalyzer D). Data are plotted as relative differences (in %).The continuous line represents the mean difference, the fine dashed
lines the upper and lower limits of agreement (mean difference = 1.96 SD) and the rough dashed lines the defined limits of clinical acceptability
(10 to —10%). Open circles represent children; closed circles adults.

Relaxed versus fixed tidal breathing

Mean FRC and LCI (p-value, limits of agreement) were —1.8% (p=0.45, —32.1 to 28.6%) and —1% (p=0.37,
—22.5 to 20.5%) using ndd and —1.4%(p=0.33, 27.8 to 25.0%) and —1.5 (p=0,17, —18.7 to 15.7%) using
EM, respectively (figure S2). Overall, 11 (61%, ndd) and 10 (56%, EM) of the children and 6 (30%, ndd)
and 6 (30%, EM) of the adults had a relaxed tidal breathing pattern that fulfilled the ATS/ERS criteria for
fixed tidal breathing. In children, only a significant difference was seen in a lower respiratory rate on EM
during fixed tidal breathing (see Table S1 online supplementary materials). In adults, respiratory rate was
significantly lower on ndd during fixed tidal breathing. V1 and V-kg™"' were significantly higher on both
devices during fixed tidal breathing (see Table S1 online supplementary materials).

Discussion

Our study demonstrates that for MBNW the ndd and EM cannot be used interchangeably in healthy
children and adults. FRCgy, vielded higher values compared to FRC,44, both, in vitro and in vivo. The LCI
was comparable between the two devices; however, there were differences within subjects in almost
one-third of measurements. Moreover, both devices showed deviations in FRC measurement in vitro and
in vivo compared to pleth as well as the helium dilution technique. FRC,qq was lower compared to
FRCpjern in 38% of subjects; FRCpy was higher than FRC,je, and FRCy in 50 and 66% of subjects

TABLE 3 Comparison of FRC between the different test methods

Absolute (l) Relative (%) p-value
FRC

ndd versus pleth

Child -0.16 (—0.24; —0.07) =7.7 (—12.1; =3.4) <0.005

Adult —0.24 (-0.39; —0.09) -6.3 (—10.2; —2.4) 0.04
ndd versus He

Child 0.07 (-0.03; 0.17) 3.9 (-1.3; 9.1) 0.15

Adult 0.01 (-0.17; 0.19) 0.5 (-4.3; 5.3) 0.88
EM versus pleth

Child 0.08 (—0.03; 0.18) 4.0 (—0.6; 8.5) 0.15

Adult 0.27 (0.13; 0.42) 7.1 (3.3; 11.0) <0.005
EM versus He

Child 0.31 (0.19; 0.43) 17.4 (10.3; 24.5) 0.04

Adult 0.52 (0.29; 0.75) 18,8 (8.8; 21.7) <0.005

Data are presented as mean (95% Cl). The p-value was calculated based on the absolute values of
FRCumenw versus FRCpe, or FRChe. FRC: functional residual capacity; ndd: EasyOne Pro LAB; pleth: body
plethysmography; He: helium dilution technique; EM: Exhalyzer D.

https://doi.org/10.1183/23120541.00247-2019 6
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TABLE 4 Comparison of outcome parameters between EasyOne Pro LAB (ndd) and

Exhalyzer D (EM) during relaxed tidal breathing

ndd EM p-value

FRC L

Child 1.9 (1.5; 2.4) 2.2 (1.7; 2.6) <0.005

Adult 3.6 (3.3; 3.9) 4.1 (3.8; 4.4) <0.005
LCI

Child 7.2 (6.8; 7.5) 7.1 (6.9; 7.3) 0.83

Adult 7.3 (6.9; 7.8) 7.6 (7.1; 8.1) 0.14
CEV L

Child 13.9 (10.7; 17.0) 16.6 (13.6; 19.7) <0.005

Adult 26.3 (23.6; 29.0) 88k (29.5; 37.4) <0.005
VT mL

Child 543 (452; 633) 653 (513; 792) 0.04

Adult 862 (717; 1006) 840 (756; 926) 0.63
Vr-kg~™' mL-kg™"

Child 11.6 (10.3; 13.0) 15.4 (11.5; 16.0) 0.06

Adult 11.6 (9.9; 13.4) 11.4 (10.4; 12.4) 0.72
RR min~"

Child 22.5 (19.8; 25.2) 15.4 (13.0; 17.8) <0.005

Adult 15.3 (13.1; 17.5) 11.9 (10.4; 13.3) <0.005

Data are presented as mean (95% Cl), unless otherwise stated. FRC: functional residual capacity; LCI:
lung clearance index; CEV: cumulative expired volume; Vy: tidal volume; RR: respiratory rate.

respectively. In addition, this study shows that predefined breathing patterns have no significant effect on
FRCMBNW and LCL

In vitro

Neither of the two devices fulfilled the ATS/ERS criteria of >95% of measurements within 5% of
FRClungmodel- In contrast to published data, FRCgy; was higher than the defined accuracy rate of 5% in all
tests [13, 17, 20].

In theory, several factors could explain the differences between FRCypnw and FRCiungmoder. First, the
volume of dead space and correction for dead space are different between the two devices. The ndd device
has a larger dead space area than EM. FRC is automatically corrected for dead space in both devices. A
study investigating the effects of dead space showed that increasing dead space did not have a significant
effect on FRC in healthy adults [31]. This suggests that it is unlikely that dead space differences influenced
our results. Second, CO, in exhaled breath might be crucial for accurate calculation of molar mass with
the ultrasonic sensor utilised for MBNW in these devices. Unfortunately, simulation of physiological CO,
concentrations during expiration of human breathing patterns is not yet possible in the lung model. One
can either choose between no CO, administration or continuous CO,. It is unlikely that continuous CO,
would affect the comparison of both devices using the lung model.

Third, FRCiyngmodel Was based on the volume of the lung model when the MBNW device was connected.
Connection of the devices led to a reduction in FRCiyngmodels Which can be explained by the internal
resistance of the devices. This reduction was more pronounced in the EM device compared to ndd.
Previous studies did not describe whether the FRC was measured with or without connection of the
MBNW device [12, 13, 17, 20]. Interestingly, a relative volume-dependent difference was seen in
FRCiungmodel <1000 mL in both devices, suggesting that the devices are less suitable for lower lung
volumes. This needs to be explored in further research.

In vivo

FRCgy was significantly higher than FRC,4q and not within the limits of clinical acceptability, indicating that
the two devices are not interchangeable. The underestimation of FRC,4q4, and the overestimation of FRCgy
was consistent in vitro and in vivo and in other studies that investigated the two devices [14, 16, 18, 20].

In agreement with other studies, the EM yielded a slightly overestimated FRC for the group compared to
FRCetn; however, in 50% of subjects measured FRC was overestimated more than can be considered
clinically acceptable [14, 15, 17, 18, 20]. In contrast the ndd does underestimate the FRC compared to
FRCpjerh- These data suggest a systematic measurement error within both devices.
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In the ndd, the underestimation of FRC was clearly reduced using the new software applying the N,
algorithm, compared to studies that used older software versions [16-18, 20].

Our data are in agreement with the retrospective data of TonGa et al. [17], who also found an
underestimation of FRCpqq versus FRCyjeq, of around —10% using the new software. Software changes led
to the reduction of underestimation of FRC, by improving delay time correction between flow and gas
measurement points and the switch of use of a prototype expirogram derived from the early breaths from
the washout to compute N, to a point-by-point measurement during the entire expirogram. The change in
delay time potentially has a large effect on FRC calculation [32]. However, in almost 40% of the subjects
the underestimation of FRC was still not clinically acceptable, which implies the measurement can be
further improved.

The mean LCI for the group was comparable, in contrast to previous studies that compared the two
devices and showed a significantly higher LCI measured by EM compared to ndd [14, 20]. Nonetheless, in
the present dataset there was a wide range and the limits of a clinically acceptable difference of <10% were
not met in almost one-third of subjects, as was previously shown by PonciN et al. [14] using an old
software of ndd (version 3.37) [18]. Since the LCI is calculated as CEV/FRC, it can be expected that
differences in CEV and/or FRC will explain the variability in LCL. Although CEV and FRC measured by
EM were consistently higher than ndd, these parameters did not explain the variation in LCL, in contrast
to the findings of PonciN et al. [14].

In contrast to the absence of effect of dead space on the FRC, the difference in dead space correction could
have had an effect on LCI in our in vivo measurements [31]. For EM LCI is automatically corrected for the
dead space component. This is not the case for ndd, although this option became available in the latest
software version as LCI at airway opening (LCL,,) (version V3.05.01.07, 03-2019). A post hoc recalculation
in LCl 4 naq led to a significantly lower LCI compared to LClgy;, mean difference —11.8% (p<0.005, limits
of agreement —24.32 to 1.6) and thus led to a decrease in comparability between the two devices.

Breathing pattern

The use of a fixed and relaxed tidal breathing protocol did not result in any systematic difference in FRC
or LCIL, in contrast to other studies investigating the influence of breathing pattern that showed
inconsistent effects on FRC and LCI [24, 25]. The explanation might be that many of our subjects fulfilled
the ATS/ERS criteria of fixed tidal breathing during relaxed tidal breathing. Many of our smaller adult
subjects experienced difficulties to fulfil the ATS/ERS fixed tidal breathing criteria [11]. Therefore, we
advise a standard breathing protocol with relaxed tidal breathing pattern with a minimal breath size of
around 8 mLkg ™' to overcome dead space ventilation.

Changes in breathing pattern, different from the change between a fixed and relaxed tidal breathing
protocol, can influence MBNW outcome parameters [11, 24, 25]. Although we did not perform a systematic
evaluation of the experience of subjects on both devices, issues that might have influenced relaxed tidal
breathing pattern were raised spontaneously by the subjects. For the EM, a feeling of resistance during
breathing was reported. This is supported by the previously mentioned reduction of FRCiyngmode during
connection of the EM in vitro. For ndd, some subjects felt “rushed” by the on-demand oxygen supply,
which explains the higher respiratory rate for ndd compared to EM. Improvement could be reached by
changing from on demand to a continuous oxygen supply. The effect of these issues would be interesting to
explore in future research. Still, if a change of breathing pattern were the explanation for the differences
between the devices, we would have expected the in vitro measurements to be more consistent, as the effect
of a different breathing pattern was excluded using a standardised ventilator.

Strengths and limitations

This is the first prospective comparative study assessing two MBNW devices both in vitro and in vivo over
a broad FRC range (FRC,, varying between 1.2 and 5.6 L) including comparison with plethysmography
and helium dilution for both devices.

A limitation of our study is that the power calculation was based on the study of Raaymaxers et al. [20]; at
that time the only available study on this topic. According to the data published by Tonga et al. [17], 34
volunteers would have been needed for each group to achieve a power of 80% with a two-sided
significance level (o) of 0.05. Therefore, it may be argued that the present study is under powered [14, 17].
Nevertheless, we were able to detect clinically relevant and statistically significant differences.

Conclusion
Numerous studies demonstrated that MBNW is an important tool for assessing early changes in peripheral
airways in CF [4, 7, 10, 33, 34]. There is growing interest to support the use of LCI as primary outcome
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parameter in interventional and clinical studies [35-37]. Our study shows that there is room for further
improvement of available equipment, given the scientific importance of addressing small airways disease.
Based on the present study there is no clear preference for one of the two devices; however, it is essential
to choose one device for clinical follow-up of patients as well as in longitudinal research protocols.
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