18 research outputs found

    The phytochemical composition of Melia volkensii and its potential for insect pest management

    Get PDF
    Due to potential health and environmental risks of synthetic pesticides, coupled with their non-selectivity and pest resistance, there has been increasing demand for safer and biodegradable alternatives for insect pest management. Botanical pesticides have emerged as a promising alternative due to their non-persistence, high selectivity, and low mammalian toxicity. Six Meliaceae plant species, Azadirachta indica, Azadirachta excelsa, Azadirachta siamens, Melia azedarach, Melia toosendan, and Melia volkensii, have been subject to botanical pesticide evaluation. This review focuses on Melia volkensii, which has not been intensively studied. M. volkensii, a dryland tree species native to East Africa, has shown activity towards a broad range of insect orders, including dipterans, lepidopterans and coleopterans. Its extracts have been reported to have growth inhibiting and antifeedant properties against Schistocerca gregaria, Trichoplusia ni, Pseudaletia unipuncta, Epilachna varivestis, Nezara viridula, several Spodoptera species and other insect pests. Mortality in mosquitoes has also been reported. Several limonoids with a wide range of biological activities have been isolated from the plant, including volkensin, salannin, toosendanin, trichilin-class limonoids, volkendousin, kulactone among others. This paper presents a concise review of published information on the phytochemical composition and potential of M. volkensii for application in insect pest management

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Error analysis in physical experiments using Maple

    No full text
    status: publishe
    corecore