16 research outputs found

    Letter to the editor: Pre-exposure prophylaxis for HIV in Europe: The need for resistance surveillance

    Get PDF
    __To the editor:__ In a recent paper by Hauser et al. in this journal, a prevalence of 10.8% of transmitted drugresistant viruses was reported among newly diagnosed HIV cases in Germany in 2013 and 2014. The authors conclude that genotypic resistance testing remains important for treatment as well as HIV prevention. We comment on the use of pre-exposure prophylaxis (PrEP) in relation to drug resistance in HIV infections and the need for European surveillance of drug resistance

    Molecular Epidemiology of Endemic Human T-Lymphotropic Virus Type 1 in a Rural Community in Guinea-Bissau

    Get PDF
    Human T-Lymphotropic Virus type 1 (HTLV-1) affects millions of people worldwide. It is very similar to Simian T-Lymphotropic Virus, a virus that circulates in monkeys. HTLV-1 causes a lethal form of leukemia (Adult T-cell Leukemia) and a debilitating neurological syndrome (HTLV-associated myelopathy/tropical spastic paraparesis) in approximately 5% of infected people. Based on sequence variation, HTLV-1 can be divided into 7 subtypes (1a–1g) with the Cosmopolitan subtype 1a further subdivided into subgroups (A–E). We examined HTLV-1 diversity in a rural area in Guinea-Bissau, a country in West Africa with a high HTLV-1 prevalence (5%). We found that most viruses belong to the Cosmopolitan subtype 1a, subgroup D, but 2 viruses belonged to subtype 1g. This subtype had thus far only been found in monkey hunters in Cameroon, who were probably recently infected by monkeys. Our findings indicate that this subtype has spread beyond Central Africa. An important, unresolved question is whether persons with this subtype were infected by monkeys or through human-to-human transmission

    HTLV-1 and HIV-2 Infection Are Associated with Increased Mortality in a Rural West African Community

    Get PDF
    BACKGROUND: Survival of people with HIV-2 and HTLV-1 infection is better than that of HIV-1 infected people, but long-term follow-up data are rare. We compared mortality rates of HIV-1, HIV-2, and HTLV-1 infected subjects with those of retrovirus-uninfected people in a rural community in Guinea-Bissau. METHODS: In 1990, 1997 and 2007, adult residents (aged ≥15 years) were interviewed, a blood sample was drawn and retroviral status was determined. An annual census was used to ascertain the vital status of all subjects. Cox regression analysis was used to estimate mortality hazard ratios (HR), comparing retrovirus-infected versus uninfected people. RESULTS: A total of 5376 subjects were included; 197 with HIV-1, 424 with HIV-2 and 325 with HTLV-1 infection. The median follow-up time was 10.9 years (range 0.0-20.3). The crude mortality rates were 9.6 per 100 person-years of observation (95% confidence interval 7.1-12.9) for HIV-1, 4.1 (3.4-5.0) for HIV-2, 3.6 (2.9-4.6) for HTLV-1, and 1.6 (1.5-1.8) for retrovirus-negative subjects. The HR comparing the mortality rate of infected to that of uninfected subjects varied significantly with age. The adjusted HR for HIV-1 infection varied from 4.0 in the oldest age group (≥60 years) to 12.7 in the youngest (15-29 years). The HR for HIV-2 infection varied from 1.2 (oldest) to 9.1 (youngest), and for HTLV-1 infection from 1.2 (oldest) to 3.8 (youngest). CONCLUSIONS: HTLV-1 infection is associated with significantly increased mortality. The mortality rate of HIV-2 infection, although lower than that of HIV-1 infection, is also increased, especially among young people

    Mortality rates in people dually infected with HIV-1/2 and those infected with either HIV-1 or HIV-2: a systematic review and meta-analysis

    No full text
    As compared to HIV-1 infection, HIV-2 is less transmissible, disease progression is slower, and the mortality risk is lower. It has been suggested that HIV-2 infection inhibits the progression of HIV-1 in individuals dually infected by HIV-1 and HIV-2 (HIV-D). We examined whether the mortality rates in dually infected individuals differ from those in persons infected with either HIV-1 or HIV-2. We conducted a systematic review and meta-analysis. Medline and Embase databases were searched for studies that reported the number of deaths and person-years of observation (PY) for at least two of the three HIV groups (i.e. HIV-1, HIV-2, and HIV-D). Meta-analyses were then performed with random-effects models, estimating combined mortality rate ratios (MRRs). Of the 631 identified titles, six articles were included in the meta-analysis of HIV-D-infected individuals versus HIV-mono-infected persons, and seven were included in the analysis of HIV-1-mono-infected versus HIV-2-mono-infected individuals. The overall MRR of those infected with HIV-D versus HIV-1 was 1.11 [95% confidence interval (CI) 0.95-1.30]. The overall MRR of those infected with HIV-D versus HIV-2 was 1.81 (95% CI 1.43-2.30) and the MRR of those infected with HIV-1 versus HIV-2 was 1.86 (95% CI 1.44-2.39). HIV-2-mono-infected persons have a lower mortality rate than those mono-infected with HIV-1 and those with HIV-D. There is no evidence that HIV-2 delays progression to death in HIV-D-infected individual

    Influence of HLA class I and HLA-KIR compound genotypes on HIV-2 infection and markers of disease progression in a Manjako community in West Africa.

    No full text
    Overall, the time to AIDS after HIV-2 infection is longer than with HIV-1, and many individuals infected with HIV-2 virus remain healthy throughout their lives. Multiple HLA and KIR gene products have been implicated in the control of HIV-1, but the effect of variation at these loci on HIV-2 disease is unknown. We show here for the first time that HLA-B*1503 is associated significantly with poor prognosis after HIV-2 infection and that HLA-B*0801 is associated with susceptibility to infection. Interestingly, previous data indicate that HLA-B*1503 is associated with low viral loads in HIV-1 clade B infection but has no significant effect on viral load in clade C infection. In general, alleles strongly associated with HIV-1 disease showed no effect in HIV-2 disease. These data emphasize the unique nature of the effects of HLA and HLA/KIR combinations on HIV-2 immune responses relative to HIV-1, which could be related to their distinct clinical course
    corecore