400 research outputs found

    Fly Memory: A Mushroom Body Story in Parts

    Get PDF
    SummaryRecent studies on the compartmentalization of fly mushroom bodies show that learning and memory in Drosophila are not as simple as might be expected for an organism with such a tiny brain

    Attention-like deficit and hyperactivity in a Drosophila memory mutant

    Get PDF
    The primary function of a brain is to produce adaptive behavioral choices by selecting the right action at the right time. In humans, attention determines action selection as well as memory formation, whereas memories also guide which external stimuli should be attended to (Chun and Turk-Browne, 2007). The complex codependence of attention, memory, and action selection makes approaching the neurobiological basis of these interactions difficult in higher animals. Therefore, a successful reductionist approach is to turn to simpler systems for unraveling such complex biological problems. In a constantly changing environment, even simple animals have evolved attention-like processes to effectively filter incoming sensory stimuli. These processes can be studied in the fruit fly, Drosophila melanogaster, by a variety of behavioral and electrophysiological techniques. Recent work has shown that mutations affecting olfactory memory formation in Drosophila also produce distinct defects in visual attention-like behavior (van Swinderen, 2007; van Swinderen et al., 2009). In this study, we extend those results to describe visual attention-like defects in the Drosophila memory consolidation mutant radish(1). In both behavioral and brain-recording assays, radish mutant flies consistently displayed responses characteristic of a reduced attention span, with more frequent perceptual alternations and more random behavior compared with wild-type flies. Some attention-like defects were successfully rescued by administering a drug commonly used to treat attention-deficit hyperactivity disorder in humans, methylphenidate. Our results suggest that a balance between persistence and flexibility is crucial for adaptive action selection in flies and that this balance requires radish gene function. Copyright Β© 2010 the author

    Attentional Switching in Humans and Flies: Rivalry in Large and Miniature Brains

    Get PDF
    Human perception, and consequently behavior, is driven by attention dynamics. In the special case of rivalry, where attention alternates between competing percepts, such dynamics can be measured and their determinants investigated. A recent study in the fruit fly, Drosophila melanogaster, now shows that the origins of attentional rivalry may be quite ancient. Furthermore, individual variation exists in the rate of attentional rivalry in both humans and flies, and in humans this is under substantial genetic influence. In the pathophysiological realm, slowing of rivalry rate is associated with the heritable psychiatric condition, bipolar disorder. Fly rivalry may therefore prove a powerful model to examine genetic and molecular influences on rivalry rate, and may even shed light on human cognitive and behavioral dysfunction

    Uncoupling of Brain Activity from Movement Defines Arousal States in Drosophila

    Get PDF
    AbstractBackground: An animal's state of arousal is fundamental to all of its behavior. Arousal is generally ascertained by measures of movement complemented by brain activity recordings, which can provide signatures independently of movement activity. Here we examine the relationships among movement, arousal state, and local field potential (LFP) activity in the Drosophila brain.Results: We have measured the correlation between local field potentials (LFPs) in the brain and overt movements of the fruit fly during different states of arousal, such as spontaneous daytime waking movement, visual arousal, spontaneous night-time movement, and stimulus-induced movement. We found that the correlation strength between brain LFP activity and movement was dependent on behavioral state and, to some extent, on LFP frequency range. Brain activity and movement were uncoupled during the presentation of visual stimuli and also in the course of overnight experiments in the dark. Epochs of low correlation or uncoupling were predictive of increased arousal thresholds even in moving flies and thus define a distinct state of arousal intermediate between sleep and waking in the fruit fly.Conclusions: These experiments indicate that the relationship between brain LFPs and movement in the fruit fly is dynamic and that the degree of coupling between these two measures of activity defines distinct states of arousal

    General anesthesia reduces complexity and temporal asymmetry of the informational structures derived from neural recordings in Drosophila

    Full text link
    We apply techniques from the field of computational mechanics to evaluate the statistical complexity of neural recording data from fruit flies. First, we connect statistical complexity to the flies' level of conscious arousal, which is manipulated by general anesthesia (isoflurane). We show that the complexity of even single channel time series data decreases under anesthesia. The observed difference in complexity between the two states of conscious arousal increases as higher orders of temporal correlations are taken into account. We then go on to show that, in addition to reducing complexity, anesthesia also modulates the informational structure between the forward- and reverse-time neural signals. Specifically, using three distinct notions of temporal asymmetry we show that anesthesia reduces temporal asymmetry on information-theoretic and information-geometric grounds. In contrast to prior work, our results show that: (1) Complexity differences can emerge at very short timescales and across broad regions of the fly brain, thus heralding the macroscopic state of anesthesia in a previously unforeseen manner, and (2) that general anesthesia also modulates the temporal asymmetry of neural signals. Together, our results demonstrate that anesthetized brains become both less structured and more reversible.Comment: 14 pages, 6 figures. Comments welcome; Added time-reversal analysis, updated discussion, new figures (Fig. 5 & Fig. 6) and Tables (Tab. 1

    A dynamic deep sleep stage in Drosophila

    Get PDF
    Howmight one determine whether simple animals such as flies sleep in stages? Sleep inmammalsis a dynamic process involving different stages of sleep intensity, and these are typically associated with measurable changes in brain activity (Blake and Gerard, 1937; Rechtschaffen and Kales, 1968; Webb and Agnew, 1971). Evidence for different sleep stages in invertebrates remains elusive, even though it has been well established that many invertebrate species require sleep (Campbell and Tobler, 1984; Hendricks et al., 2000; Shaw et al., 2000; Sauer et al., 2003). Here we used electrophysiology and arousal-testing paradigms to show that the fruit fly, Drosophila melanogaster, transitions between deeper and lighter sleep within extended bouts of inactivity, with deeper sleep intensities after15 and30 min of inactivity. As in mammals, the timing and intensity of these dynamic sleep processes in flies is homeostatically regulated and modulated by behavioral experience. Two molecules linked to synaptic plasticity regulate the intensity of the first deep sleep stage. Optogenetic upregulation of cyclic adenosine monophosphate during the day increases sleep intensity at night, whereas loss of function of a molecule involved in synaptic pruning, the fragile-X mental retardation protein, increases sleep intensity during the day. Our results show that sleep is not homogenous in insects, and suggest that waking behavior and the associated synaptic plasticity mechanisms determine the timing and intensity of deep sleep stages in Drosophila

    An Automated Paradigm for Drosophila Visual Psychophysics

    Get PDF
    Background: Mutations that cause learning and memory defects in Drosophila melanogaster have been found to also compromise visual responsiveness and attention. A better understanding of attention-like defects in such Drosophila mutants therefore requires a more detailed characterization of visual responsiveness across a range of visual parameters. Methodology/Principal Findings: We designed an automated behavioral paradigm for efficiently dissecting visual responsiveness in Drosophila. Populations of flies walk through multiplexed serial choice mazes while being exposed to moving visuals displayed on computer monitors, and infra-red fly counters at the end of each maze automatically score the responsiveness of a strain. To test our new design, we performed a detailed comparison between wild-type flies and a learning and memory mutant, dunce. We first confirmed that the learning mutant dunce displays increased responsiveness to a black/green moving grating compared to wild type in this new design. We then extended this result to explore responses to a wide range of psychophysical parameters for moving gratings (e.g., luminosity, contrast, spatial frequency, velocity) as well as to a different stimulus, moving dots. Finally, we combined these visuals (gratings versus dots) in competition to investigate how dunce and wild-type flies respond to more complex and conflicting motion effects. Conclusions/Significance: We found that dunce responds more strongly than wild type to high contrast and highly structured motion. This effect was found for simple gratings, dots, and combinations of both stimuli presented in competition

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
    • …
    corecore