4,776 research outputs found
Identifying single electron charge sensor events using wavelet edge detection
The operation of solid-state qubits often relies on single-shot readout using
a nanoelectronic charge sensor, and the detection of events in a noisy sensor
signal is crucial for high fidelity readout of such qubits. The most common
detection scheme, comparing the signal to a threshold value, is accurate at low
noise levels but is not robust to low-frequency noise and signal drift. We
describe an alternative method for identifying charge sensor events using
wavelet edge detection. The technique is convenient to use and we show that,
with realistic signals and a single tunable parameter, wavelet detection can
outperform thresholding and is significantly more tolerant to 1/f and
low-frequency noise.Comment: 11 pages, 4 figure
Low-speed impact craters in loose granular media
We report on craters formed by balls dropped into dry, non-cohesive, granular
media. By explicit variation of ball density , diameter , and
drop height , the crater diameter is confirmed to scale as the 1/4 power of
the energy of the ball at impact:
. Against expectation, a different
scaling law is discovered for the crater depth:
. The scaling with properties of
the medium is also established. The crater depth has significance for granular
mechanics in that it relates to the stopping force on the ball.Comment: experiment; 4 pages, 3 figure
Tunable spin-selective loading of a silicon spin qubit
The remarkable properties of silicon have made it the central material for
the fabrication of current microelectronic devices. Silicon's fundamental
properties also make it an attractive option for the development of devices for
spintronics and quantum information processing. The ability to manipulate and
measure spins of single electrons is crucial for these applications. Here we
report the manipulation and measurement of a single spin in a quantum dot
fabricated in a silicon/silicon-germanium heterostructure. We demonstrate that
the rate of loading of electrons into the device can be tuned over an order of
magnitude using a gate voltage, that the spin state of the loaded electron
depends systematically on the loading voltage level, and that this tunability
arises because electron spins can be loaded through excited orbital states of
the quantum dot. The longitudinal spin relaxation time T1 is measured using
single-shot pulsed techniques and found to be ~3 seconds at a field of 1.85
Tesla. The demonstration of single spin measurement as well as a long spin
relaxation time and tunability of the loading are all favorable properties for
spintronics and quantum information processing applications.Comment: 4 pages, 3 figures, Supplemental Informatio
Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems
Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition
Hyperon-nucleon scattering and hyperon masses in the nuclear medium
We analyze low-energy hyperon-nucleon scattering using an effective field
theory in next-to-leading order. By fitting experimental cross sections for
laboratory hyperon momenta below 200 MeV/c and using information from the
hypertriton we determine twelve contact-interaction coefficients. Based on
these we discuss the low-density expansion of hyperon mass shifts in the
nuclear medium.Comment: 10 pages, 2 figure
Using the ‘Think Aloud’ Method to Inform Skinfold Instruction in Exercise Science
Please view abstract in the attached PDF fil
- …