1,345 research outputs found

    Dynamics of an exclusion process with creation and annihilation

    Full text link
    We examine the dynamical properties of an exclusion process with creation and annihilation of particles in the framework of a phenomenological domain-wall theory, by scaling arguments and by numerical simulation. We find that the length- and time scale are finite in the maximum current phase for finite creation- and annihilation rates as opposed to the algebraically decaying correlations of the totally asymmetric simple exclusion process (TASEP). Critical exponents of the transition to the TASEP are determined. The case where bulk creation- and annihilation rates vanish faster than the inverse of the system size N is also analyzed. We point out that shock localization is possible even for rates proportional to 1/N^a, 1<a<2.Comment: 16 pages, 8 figures, typos corrected, references added, section 4 revise

    Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic

    Full text link
    First we consider a unidirectional flux \omega_bar of vehicles each of which is characterized by its `natural' velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight `world lines' in the time-space plane, with overtaking events represented by a fixed queuing time tau imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w=\phi(v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time \tau in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value \omega_bar_c of the control parameter \omega_bar the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density \rho_bar rather than the flux \omega_bar is the control parameter. Unequal fluxes \omega_bar_A and \omega_bar_B in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.Comment: 50 pages, 16 figures; extra references adde

    Colossal magnetooptical conductivity in doped manganites

    Get PDF
    We show that the current carrier density collapse in doped manganites, which results from bipolaron formation in the paramagnetic phase, leads to a colossal change of the optical conductivity in an external magnetic field at temperatures close to the ferromagnetic transition. As with the colossal magnetoresistance (CMR) itself, the corresponding magnetooptical effect is explained by the dissociation of localized bipolarons into mobile polarons owing to the exchange interaction with the localized Mn spins in the ferromagnetic phase. The effect is positive at low frequencies and negative in the high-frequency region. The present results agree with available experimental observations.Comment: 4 pages, REVTeX 3.0, two eps-figures included in the tex

    Orbital interactions and chemical reactivity of metal particles and metal surfaces

    Get PDF
    A review is presented with 101 refs. on chem. bonding to metal surfaces and small metal particles demonstrating the power of symmetry concepts to predict changes in chem. bonding. Ab-initio calcns. of chemisorption to small particles, as well as semiempirical extended Hueckel calcns. applied to the study of the reactivity of metal slabs are reviewed. On small metal particles, classical notions of electron promotion and hybridization are found to apply. The surroundings of a metal atom (ligands in complexes, other metal atoms at surfaces), affect bonding and reactivity through the prehybridization they induce. A factor specific for large particles and surfaces is the required localization of electrons on the atoms involved in the metal surface bond. At the surface, the bond energy is found to relate to the grou8p orbital local d. of states at the Fermi level. The use of this concept is extensively discussed and illustrated for chemisorption of CO and dissocn. of NO on metal surfaces. A discussion is given of the current decompn. schemes of bond energies and related concepts (exchange (Pauli)-repulsion, polarization, charge transfer). The role of non-orthogonality of fragment orbitals and of kinetic and potential energy for Pauli repulsion and (orbital) polarization is analyzed. Numerous examples are discussed to demonstrate the impact of those concepts on chem. bonding theor

    Recommendations on Surveillance for Differentiated Thyroid Carcinoma in Children with PTEN Hamartoma Tumor Syndrome

    Get PDF
    BACKGROUND: PTEN hamartoma tumor syndrome (PHTS) represents a group of syndromes caused by a mutation in the PTEN gene. Children with a germline PTEN mutation have an increased risk of developing differentiated thyroid carcinoma (DTC). Several guidelines have focused on thyroid surveillance in these children, but studies substantiating these recommendations are lacking. OBJECTIVE: The present study intends to provide the available evidence for a thyroid carcinoma surveillance program in children with PHTS. METHODS: An extensive literature search was performed to identify all studies on DTC in pediatric PHTS patients. Two pediatric cases are presented to illustrate the pros and cons of thyroid carcinoma surveillance. Recommendations for other patient groups at risk for DTC were evaluated. Consensus within the study team on recommendations for children with PHTS was reached by balancing the incidence and behavior of DTC with the pros and cons of thyroid surveillance, and the different surveillance methods. RESULTS: In 5 cohort studies the incidence of DTC in childhood ranged from 4 to 12%. In total 57 cases of DTC and/or benign nodular disease in pediatric PHTS patients were identified, of which 27 had proven DTC, with a median age of 12 years (range 4-17). Follicular thyroid carcinoma (FTC) was diagnosed in 52% of the pediatric DTC patients. No evidence was found for a different clinical behavior of DTC in PHTS patients compared to sporadic DTC. CONCLUSIONS: Children with PHTS are at increased risk for developing DTC, with 4 years being the youngest age reported at presentation and FTC being overrepresented. DTC in pediatric PHTS patients does not seem to be more aggressive than sporadic DTC. RECOMMENDATIONS: Surveillance for DTC in pediatric PHTS patients seems justified, as early diagnosis may decrease morbidity. Consensus within the study team was reached to recommend surveillance from the age of 10 years onwards, since at that age the incidence of DTC seems to reach 5%. Surveillance for DTC should consist of yearly neck palpation and triennial thyroid ultrasound. Surveillance in children with PHTS should be performed in a center of excellence for pediatric thyroid disease or PHTS

    Roughening of Pt nanoparticles induced by surface-oxide formation

    Get PDF
    Using density functional theory (DFT) and thermodynamic considerations we studied the equilibrium shape of Pt nanoparticles (NPs) under electrochemical conditions. We found that at very high oxygen coverage, obtained at high electrode potentials, the experimentally-observed tetrahexahedral (THH) NPs consist of high-index (520) faces. Since high-index surfaces often show higher (electro-)chemical activity in comparison to their close-packed counterparts, the THH NPs can be promising candidates for various (electro-) catalytic applications

    The Essential Interactions in Oxides and Spectral Weight Transfer in Doped Manganites

    Get PDF
    We calculate the value of the Fr\"ohlich electron-phonon interaction in manganites, cuprates, and some other charge-transfer insulators and show that this interaction is much stronger than any relevant magnetic interaction. A polaron shift due to the Fr\"ohlich interaction, which is about 1 eV, suggests that carriers in those systems are small (bi)polarons at all temperatures and doping levels, in agreement with the oxygen isotope effect and other data. An opposite conclusion, recently suggested in the literature, is shown to be incorrect. The frequency and temperature dependence of the optical conductivity of ferromagnetic manganites is explained within the framework of the bipolaron theory.Comment: 6 pages, REVTeX 3.1 with 3 eps-figures. Journal versio
    • …
    corecore