158 research outputs found

    A phase 2, open-label, multicenter study of the long-term safety of siltuximab (an anti-interleukin-6 monoclonal antibody) in patients with multicentric Castleman disease

    Get PDF
    BackgroundMulticentric Castleman disease (MCD) is a rare, systemic lymphoproliferative disorder driven by interleukin (IL)-6 overproduction. Siltuximab, an anti-IL-6 monoclonal antibody, has demonstrated durable tumor and symptomatic responses in a multinational, randomized, placebo-controlled study of MCD.MethodsThis preplanned safety analysis was conducted to evaluate the long-term safety of siltuximab treatment among 19 patients with MCD who had stable disease or better and were enrolled in a phase-1 study and subsequent ongoing, open-label, phase-2 extension study. Dosing was 11 mg/kg administered intravenously every 3 weeks, per protocol, or every 6 weeks at the investigator's discretion. Safety monitoring focused on potential risks associated with the anti-IL-6 mechanism of action. Investigator-assessed disease control status was also documented.ResultsMedian treatment duration for the 19 patients was 5.1 (range 3.4, 7.2) years, with 14 (74%) patients treated for >4 years. Grade-≥3 adverse events (AEs) reported in >1 patient included hypertension (n = 3) and nausea, cellulitis, and fatigue (n = 2 each). Grade-≥3 AEs at least possibly attributed to siltuximab were leukopenia, lymphopenia, and a serious AE of polycythemia (n = 1 each). Hypertriglyceridemia and hypercholesterolemia (total cholesterol) were reported in 8 and 9 patients, respectively. No disease relapses were observed, and 8 of 19 patients were able to switch to an every-6-week dosing schedule.ConclusionsAll MCD patients in this extension study have received siltuximab for a prolonged duration (up to 7 years) without evidence of cumulative toxicity or treatment discontinuations and with few serious infections. All patients are alive, demonstrate sustained disease control, and continue to receive siltuximab

    Optimisation of anti-interleukin-6 therapy: Precision medicine through mathematical modelling

    Get PDF
    BackgroundDysregulated interleukin (IL)-6 production can be characterised by the levels present, the kinetics of its rise and its inappropriate location. Rapid, excessive IL-6 production can exacerbate tissue damage in vital organs. In this situation, therapy with an anti-IL-6 or anti-IL-6 receptor (IL-6R) monoclonal antibody, if inappropriately dosed, may be insufficient to fully block IL-6 signalling and normalise the immune response.MethodsWe analysed inhibition of C-reactive protein (CRP) – a biomarker for IL-6 activity – in patients with COVID-19 or idiopathic multicentric Castleman disease (iMCD) treated with tocilizumab (anti-IL-6R) or siltuximab (anti-IL-6), respectively. We used mathematical modelling to analyse how to optimise anti-IL-6 or anti-IL-6R blockade for the high levels of IL-6 observed in these diseases.ResultsIL-6 signalling was insufficiently inhibited in patients with COVID-19 or iMCD treated with standard doses of anti-IL-6 therapy. Patients whose disease worsened throughout therapy had only partial inhibition of CRP production. Our model demonstrated that, in a scenario representative of iMCD with persistent high IL-6 production not controlled by a single dose of anti-IL-6 therapy, repeated administration more effectively inhibited IL-6 activity. In a situation with rapid, high, dysregulated IL-6 production, such as severe COVID-19 or a cytokine storm, repeated daily administration of an anti-IL-6/anti-IL-6R agent, or alternating daily doses of anti-IL-6 and anti-IL-6R therapies, could neutralise IL-6 activity.ConclusionIn clinical practice, IL-6 inhibition should be individualised based on pathophysiology to achieve full blockade of CRP production.FundingEUSA Pharma funded medical writing assistance and provided access to the phase II clinical data of siltuximab for analysis

    Epigenomic translocation of H3K4me3 broad domains over oncogenes following hijacking of super-enhancers

    Get PDF
    Chromosomal translocations are important drivers of hematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B cell (MAF, MYC and FGFR3/NSD2) and in T-cell malignancies (LMO2, TLX3 and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers

    MGP Panel is a comprehensive targeted genomics panel for molecular profiling of multiple myeloma patients

    Get PDF
    PURPOSE: We designed a comprehensive multiple myeloma (MM) targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNAs). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical fluorescence in situ hybridization (FISH) (translocations), multiplex ligation probe analysis (MLPA) (CNAs), whole genome sequencing (WGS) (CNAs, mutations, translocations) or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS: Canonical IgH translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for one patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2=0.969. VAFs for 74 mutations were compared between sequencing and ddPCR with concordance of R2=0.9849. CONCLUSIONS: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost effective, comprehensive, clinically actionable and can be routinely deployed to assist risk stratification at diagnosis or post-treatment to guide sequencing of therapies

    The functional epigenetic landscape of aberrant gene expression in molecular subgroups of newly diagnosed multiple myeloma

    Get PDF
    Background Multiple Myeloma (MM) is a hematological malignancy with genomic heterogeneity and poor survival outcome. Apart from the central role of genetic lesions, epigenetic anomalies have been identified as drivers in the development of the disease. Methods Alterations in the DNA methylome were mapped in 52 newly diagnosed MM (NDMM) patients of six molecular subgroups and matched with loci-specific chromatin marks to define their impact on gene expression. Differential DNA methylation analysis was performed using DMAP with a ≥10% increase (hypermethylation) or decrease (hypomethylation) in NDMM subgroups, compared to control samples, considered significant for all the subsequent analyses with p<0.05 after adjusting for a false discovery rate. Results We identified differentially methylated regions (DMRs) within the etiological cytogenetic subgroups of myeloma, compared to control plasma cells. Using gene expression data we identified genes that are dysregulated and correlate with DNA methylation levels, indicating a role for DNA methylation in their transcriptional control. We demonstrated that 70% of DMRs in the MM epigenome were hypomethylated and overlapped with repressive H3K27me3. In contrast, differentially expressed genes containing hypermethylated DMRs within the gene body or hypomethylated DMRs at the promoters overlapped with H3K4me1, H3K4me3, or H3K36me3 marks. Additionally, enrichment of BRD4 or MED1 at the H3K27ac enriched DMRs functioned as super-enhancers (SE), controlling the overexpression of genes or gene-cassettes. Conclusions Therefore, this study presents the underlying epigenetic regulatory networks of gene expression dysregulation in NDMM patients and identifies potential targets for future therapies

    Ixazomib-lenalidomide-dexamethasone in routine clinical practice: Effectiveness in relapsed/refractory multiple myeloma

    Get PDF
    [Aim]: To evaluate the effectiveness and safety of ixazomib-lenalidomide-dexamethasone (IRd) in relapsed/refractory multiple myeloma in routine clinical practice. Patients & methods: Patient-level data from the global, observational INSIGHT MM and the Czech Registry of Monoclonal Gammopathies were integrated and analyzed.[Results]: At data cut-off, 263 patients from 13 countries were included. Median time from diagnosis to start of IRd was 35.8 months; median duration of follow-up was 14.8 months. Overall response rate was 73%, median progression-free survival, 21.2 months and time-to-next therapy, 33.0 months. Ixazomib/lenalidomide dose reductions were required in 17%/36% of patients; 32%/30% of patients discontinued ixazomib/lenalidomide due to adverse events.[Conclusion]: The effectiveness and safety of IRd in routine clinical practice are comparable to those reported in TOURMALINE-MM1.This work was supported by Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited

    The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

    Get PDF
    Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine’s clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves

    Plasma cells expression from smouldering myeloma to myeloma reveals the importance of the PRC2 complex, cell cycle progression, and the divergent evolutionary pathways within the different molecular subgroups

    Get PDF
    Sequencing studies have shed some light on the pathogenesis of progression from smouldering multiple myeloma (SMM) and symptomatic multiple myeloma (MM). Given the scarcity of smouldering samples, little data are available to determine which translational programmes are dysregulated and whether the mechanisms of progression are uniform across the main molecular subgroups. In this work, we investigated 223 SMM and 1348 MM samples from the University of Arkansas for Medical Sciences (UAMS) for which we had gene expression profiling (GEP). Patients were analysed by TC-7 subgroup for gene expression changes between SMM and MM. Among the commonly dysregulated genes in each subgroup, PHF19 and EZH2 highlight the importance of the PRC2.1 complex. We show that subgroup specific differences exist even at the SMM stage of disease with different biological features driving progression within each TC molecular subgroup. These data suggest that MMSET SMM has already transformed, but that the other precursor diseases are distinct clinical entities from their symptomatic counterpart
    corecore