307 research outputs found

    Dilaton-Axion hair for slowly rotating Kerr black holes

    Full text link
    Campbell et al. demonstrated the existence of axion ``hair'' for Kerr black holes due to the non-trivial Lorentz Chern-Simons term and calculated it explicitly for the case of slow rotation. Here we consider the dilaton coupling to the axion field strength, consistent with low energy string theory and calculate the dilaton ``hair'' arising from this specific axion source.Comment: 13 pages + 1 fi

    Environmental Enrichment: Disentangling the Influence of Novelty, Social, and Physical Activity on Cerebral Amyloid Angiopathy in a Transgenic Mouse Model

    Get PDF
    Cerebral amyloid angiopathy (CAA) is the deposition of amyloid protein in the cerebral vasculature, a common feature in both aging and Alzheimer’s disease (AD). However, the effects of environmental factors, particularly cognitive stimulation, social stimulation, and physical activity, on CAA pathology are poorly understood. These factors, delivered in the form of the environmental enrichment (EE) paradigm in rodents, have been shown to have beneficial effects on the brain and behavior in healthy aging and AD models. However, the relative importance of these subcomponents on CAA pathology has not been investigated. Therefore, we assessed the effects of EE, social enrichment (SOC), and cognitive enrichment (COG) compared to a control group that was single housed without enrichment (SIN) from 4 to 8 months of age in wild-type mice (WT) and Tg-SwDI mice, a transgenic mouse model of CAA that exhibits cognitive/behavioral deficits. The results show that individual facets of enrichment can affect an animal model of CAA, though the SOC and combined EE conditions are generally the most effective at producing physiological, cognitive/behavioral, and neuropathological changes, adding to a growing literature supporting the benefits of lifestyle interventions

    Numerical test of the damping time of layer-by-layer growth on stochastic models

    Full text link
    We perform Monte Carlo simulations on stochastic models such as the Wolf-Villain (WV) model and the Family model in a modified version to measure mean separation \ell between islands in submonolayer regime and damping time t~\tilde t of layer-by-layer growth oscillations on one dimension. The stochastic models are modified, allowing diffusion within interval rr upon deposited. It is found numerically that the mean separation and the damping time depend on the diffusion interval rr, leading to that the damping time is related to the mean separation as t~4/3{\tilde t} \sim \ell^{4/3} for the WV model and t~2{\tilde t} \sim \ell^2 for the Family model. The numerical results are in excellent agreement with recent theoretical predictions.Comment: 4 pages, source LaTeX file and 5 PS figure

    Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation

    Get PDF
    Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the trajectories of such changes are not clear. We assessed microbial communities using phospholipid fatty acid profiling, metabarcoding, CO2 emissions, and functional gene microarrays in a decade-long C deprivation field experiment. We also assessed changes in a range of soil physicochemical properties, including using X-ray Computed Tomography imaging to assess differences in soil structure. Two sets of soils were deprived of C inputs by removing plant inputs for 10 years and 1 year, respectively. We found a reduction in diversity measures, after 10 years of C deprivation, which was unexpected based on previous research. Fungi appeared to be most impacted, likely due to competition for scarce resources after exhausting the available plant material. This suggestion was supported by evidence of bioindicator taxa in non-vegetated soils that may directly compete with or consume fungi. There was also a reduction in copies of most functional genes after 10 years of C deprivation, though gene copies increased for phytase and some genes involved in decomposing recalcitrant C and methanogenesis. Additionally, soils under C deprivation displayed expected reductions in pH, organic C, nitrogen, and biomass as well as reduced mean pore size, especially in larger pores. However, pore connectivity increased after 10 years of C deprivation contrary to expectations. Our results highlight concurrent collapse of soil structure and biodiversity following long-term C deprivation. Overall, this study shows the negative trajectory of continuous C deprivation and loss of organic matter on a wide range of soil quality indicators and microorganisms

    Long-term voluntary wheel running does not alter vascular amyloid burden but reduces neuroinflammation in the Tg-SwDI mouse model of cerebral amyloid angiopathy

    Get PDF
    Background: Cardiovascular exercise (CVE) has been shown to be protective against cognitive decline in aging and the risk for dementias, including Alzheimer’s Disease (AD). CVE has also been shown to have several beneficial effects on brain pathology and behavioral impairments in mouse models of AD; however, no studies have specifically examined the effects of CVE on cerebral amyloid angiopathy (CAA), which is the accumulation of amyloid-beta (Aβ) in the cerebral vasculature. CAA may be uniquely susceptible to beneficial effects of CVE interventions due to the location and nature of the pathology. Alternatively, CVE may exacerbate CAA pathology, due to added stress on already compromised cerebral vasculature. Methods: In the current study, we examined the effects of CVE over many months in mice, thereby modeling a lifelong commitment to CVE in humans. We assessed this voluntary CVE in Tg-SwDI mice, a transgenic mouse model of CAA that exhibits behavioral deficits, fibrillar vascular Aβ pathology, and significant perivascular neuroinflammation. Various “doses” of exercise intervention (0 h (“Sedentary”), 1 h, 3 h, 12 h access to running wheel) were assessed from ~ 4 to 12 months of age for effects on physiology, behavior/cognitive performance, and pathology. Results: The 12 h group performed the greatest volume of exercise, whereas the 1 h and 3 h groups showed high levels of exercise intensity, as defined by more frequent and longer duration running bouts. Tg-SwDI mice exhibited significant cerebral vascular Aβ pathology and increased expression of pro-inflammatory cytokines as compared to WT controls. Tg-SwDI mice did not show motor dysfunction or altered levels of anxiety or sociability compared to WT controls, though Tg-SwDI animals did appear to exhibit a reduced tendency to explore novel environments. At all running levels, CAA pathology in Tg-SwDI mice was not significantly altered, but 12-h high-volume exercise showed increased insoluble Aβ burden. However, CVE attenuated the expression of pro-inflammatory cytokines TNF-α and IL-6 and was generally effective at enhancing motor function and reducing anxiety-like behavior in Tg-SwDI mice, though alterations in learning and memory tasks were varied. Conclusions: Taken together, these results suggest that CAA can still develop regardless of a lifespan of substantial CVE, although downstream effects on neuroinflammation may be reduced and functional outcomes improved

    The Effects of Volume Versus Intensity of Long-Term Voluntary Exercise on Physiology and Behavior in C57/Bl6 Mice

    Get PDF
    Cardiovascular exercise (CVE) is associated with healthy aging and reduced risk of disease in humans, with similar benefits seen in animals. Most rodent studies, however, have used shorter intervention periods of a few weeks to a few months, begging questions as to the effects of longer-term, or even life-long, exercise. Additionally, most animal studies have utilized a single exercise treatment group – usually unlimited running wheel access – resulting in large volumes of exercise that are not clinically relevant. It is therefore incumbent to determine the physiological and cognitive/behavioral effects of a range of exercise intensities and volumes over a long-term period that model a lifelong commitment to CVE. In the current study, C57/Bl6 mice remained sedentary or were allowed either 1, 3, or 12 h of access to a running wheel per day, 5 days/weeks, beginning at 3.5–4 months of age. Following an eight-month intervention period, animals underwent a battery of behavioral testing, then euthanized and blood and tissue were collected. Longer access to a running wheel resulted in greater volume and higher running speed, but more breaks in running. All exercise groups showed similarly reduced body weight, increased muscle mass, improved motor function on the rotarod, and reduced anxiety in the open field. While all exercise groups showed increased food intake, this was greatest in the 12 h group but did not differ between 1 h and 3 h mice. While exercise dose-dependently increased working memory performance in the y-maze, the 1 h and 12 h groups showed the largest changes in the mass of many organs, as well as alterations in several behaviors including social interaction, novel object recognition, and Barnes maze performance. These findings suggest that long-term exercise has widespread effects on physiology, behavior, and cognition, which vary by “dose” and measure, and that even relatively small amounts of daily exercise can provide benefits

    Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community

    Get PDF
    Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome

    Coarsening Dynamics of Crystalline Thin Films

    Full text link
    The formation of pyramid-like structures in thin-film growth on substrates with a quadratic symmetry, e.g., {001} surfaces, is shown to exhibit anisotropic scaling as there exist two length scales with different time dependences. Analytical and numerical results indicate that for most realizations coarsening of mounds is described by an exponent n=0.2357. However, depending on material parameters, n may lie between 0 (logarithmic coarsening) and 1/3. In contrast, growth on substrates with triangular symmetries ({111} surfaces) is dominated by a single length scale and an exponent n=1/3.Comment: RevTeX, 4 pages, 3 figure

    Diffuse white matter loss in a transgenic rat model of cerebral amyloid angiopathy

    Get PDF
    Diffuse white matter (WM) disease is highly prevalent in elderly with cerebral small vessel disease (cSVD). In humans, cSVD such as cerebral amyloid angiopathy (CAA) often coexists with Alzheimer’s disease imposing a significant impediment for characterizing their distinct effects on WM. Here we studied the burden of age-related CAA pathology on WM disease in a novel transgenic rat model of CAA type 1 (rTg-DI). A cohort of rTg-DI and wild-type rats was scanned longitudinally using MRI for characterization of morphometry, cerebral microbleeds (CMB) and WM integrity. In rTg-DI rats, a distinct pattern of WM loss was observed at 9 M and 11 M. MRI also revealed manifestation of small CMB in thalamus at 6 M, which preceded WM loss and progressively enlarged until the moribund disease stage. Histology revealed myelin loss in the corpus callosum and thalamic CMB in all rTg-DI rats, the latter of which manifested in close proximity to occluded and calcified microvessels. The quantitation of CAA load in rTg-DI rats revealed that the most extensive microvascular Aβ deposition occurred in the thalamus. For the first time using in vivo MRI, we show that CAA type 1 pathology alone is associated with a distinct pattern of WM loss
    corecore