689 research outputs found

    Changes in the mechanical properties of dermal sheep collagen during in vitro degradation

    Get PDF
    The changes in tensile strength, elongation at break, and high strain modulus of dermal sheep collagen (DSC) during in vitro degradation using bacterial collagenase were studied. The changes in mechanical properties were compared with the change in weight of the samples as a function of degradation time. DSC was crosslinked with either glutaraldehyde (GA) or hexamethylene diisocyanate (HMDIC). During degradation, the changes in mechanical properties of the N-DSC, H-DSC or G-DSC samples were more pronounced than the changes in the weight of the samples. Of the mechanical properties studied, the tensile strength was most susceptible to degradation of the DSC samples. After 2.5 h, N-DSC samples had lost only 55% of their initial weight, but the samples had no tensile strength left. Similar results were obtained for H-DSC, which retained no tensile strength after 24 h degradation, whereas only 45% of the initial weight was lost. G-DSC lost 3.5% of its weight after 24 h degradation, but only 25% of the initial tensile strength remained

    Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen

    Get PDF
    The influence of ethylene oxide gas treatment on the in vitro degradation behavior of noncrosslinked, glutaraldehyde crosslinked or hexamethylene diisocyanate crosslinked dermal sheep collagen (DSC) using bacterial collagenase is described. The results obtained were compared with the degradation behavior of either nonsterilized or γ-sterilized DSC. Upon ethylene oxide sterilization, reaction of ethylene oxide with the free amine groups of DSC occurred, which resulted in a decreased helix stability, as indicated by a lowering of the shrinkage temperature of all three types of DSC. Except for the low strain modulus the mechanical properties of the ethylene oxide sterilized materials were not significantly altered. γ-Sterilization induced chain scission in all three types of DSC, resulting in a decrease of both the tensile strength and the high strain modulus of noncrosslinked and crosslinked DSC. When exposed to a solution of bacterial collagenase, ethylene oxide sterilized materials had a lower rate of degradation compared with nonsterilized DSC. This has been explained by a reduced adsorption of the collagenase onto the collagen matrix as a result of the introduction of pendant N-2-hydroxy ethyl groups

    Secondary cytotoxicity of (crosslinked) dermal sheep collagen during repeated exposure to human fibroblasts

    Get PDF
    We investigated commercially available dermal sheep collagen either cross-linked with hexamethylenediisocyanate, or cross-linked with glutaraldehyde. In previous in vitro studies we could discriminate primary, i.e. extractable, and secondary cytotoxicity, due to cell-biomaterial interactions, i.e. enzymatic actions. To develop dermal sheep collagen for clinical applications, we focused in this study on the release, e.g. elimination, of secondary cytotoxicity over time. We used the universal 7 d methylcellulose cell culture with human skin fibroblasts as a test system. Hexamethylenediisocyanate-cross-linked dermal sheep collagen and glutaraldehyde-cross-linked dermal sheep collagen were tested, with intervals of 6 d, over a culture period of 42 d. With hexamethylenediisocyanate-cross-linked dermal sheep collagen, cytotoxicity, i.e. cell growth inhibition and deviant cell morphology, was eliminated after 18 d of exposure. When testing glutaraldehyde-cross-linked dermal sheep collagen, the bulk of cytotoxic products was released after 6 d, but a continuous low secondary cytotoxicity was measured up to 42 d. As a control, non-cross-linked dermal-sheep collagen was tested over a period of 36 d, but no secondary cytotoxic effects were observed. The differences in release of secondary cytotoxicity between hexamethylenediisocyanate-cross-linked dermal sheep collagen, glutaraldehyde-cross-linked dermal sheep collagen and non-cross-linked dermal sheep collagen are explained from differences in cross-linking agents and cross-links obtained. We hypothesize that secondary cytotoxicity results from enzymatic release of pendant molecules from hexamethylene-diisocyanate-cross-linked dermal sheep collagen, e.g. formed after reaction of hydrolysis products of hexamethylenediisocyanate with dermal sheep collagen. Glutaraldehyde-cross-linked dermal sheep collagen contains residual cross-linking agents, which induce the bulk cytotoxicity. Apart from being sensitive to enzymatic degradation, glutaraldehyde-cross-linked dermal sheep collagen was also found to be sensitive to aqueous hydrolysis. Hydrolysis of cross-links may release cytotoxic products and introduce new pendant molecules within glutaraldehyde-cross-linked dermal sheep collagen, which in turn induce cytotoxicity after enzymatic attack

    Crosslinking of dermal sheep collagen using hexamethylene diisocyanate

    Get PDF
    The use of hexamethylene diisocyanate (HMDIC) as a crosslinking agent for dermal sheep collagen (DSC) was studied. Because HMDIC is only slightly water soluble, a surfactant was used to obtain a clear and micellar crosslinking solution and to promote the penetration of HMDIC in the DSC matrix. Using optimized conditions treatment of non-crosslinked DSC (N-DSC) with HMDIC (H-DSC) increased the shrinkage temperature (Ts) of N-DSC from 56°C to 74°C for H-DSC. A linear relation between the decrease in free amine group content and the increase in Ts was observed. Crosslinking with HMDIC did not influence the tensile strength of the N-DSC samples but increased the elongation at break from 141% to 163% and decreased the high-strain modulus from 26 MPa to 16 MPa for the H-DSC samples, respectively

    Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    Get PDF
    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links after reaction with free amine groups. Treatment of dermal sheep collagen (DSC) with EDC (E-DSC) resulted in materials with an increased shrinkage temperature (Ts) and a decreased free amine group content, showing that cross-linking occurred. Addition of N-hydroxysuccinimide to the EDC-containing cross-linking solution (E/N-DSC) increased the rate of cross-linking. Cross-linking increased the Ts of non-cross-linked DSC samples from 56 to 73 °C for E-DSC and to 86 °C for E/N-DSC samples, respectively. For both cross-linking methods a linear relation between the decrease in free amine group content and the increase in Ts was observed. The tensile strength and the high strain modulus of E/N-DSC samples decreased upon cross-linking from 18 to 15MPa and from 26 to 16MPa, respectively. The elongation at break of E/N-DSC increased upon cross-linking from 142 to 180%

    Adhesion and spreading of cultured endothelial cells on modified and unmodified poly(ethylene terephthalate): a morphological study

    Get PDF
    The in vitro adhesion and spreading of human endothelial cells (HEC) on hydrophobic poly(ethylene terephthalate) (PETP) and moderately wettable tissue culture polyethylene terephthalate) (TCPETP) were studied with light microscopy and electron microscopy. Numbers of HEC adhering on TCPETP were always higher than those found on PETP. When cells were seeded in the presence of serum, extensive cell spreading on both PETP and TCPETP was observed after the first 30 min. Thereafter, spread cells appeared to withdraw from the PETP surface, resulting in irregularly shaped cells. Complete cell spreading occurred on TCPETP. Complete cell spreading also occurred on PETP and TCPETP when HEC had first been seeded from phosphate buffer solution and serum was supplied after 30 min. Furthermore, HEC spread on both PETP and TCPETP when the surfaces were precoated with protein(s), which promotes cell adhesion. However, when plasma was used for the coating, spread cells did not proliferate in a monolayer pattern. This study shows that TCPETP is, in general, a better surface for adhesion and proliferation of HEC than is PETP, suggesting that vascular prostheses with a TCPETP-like surface will perform better in vivo than prostheses made of PETP

    Pupil Diameter Tracks Lapses of Attention

    Get PDF

    Сучасна лексикографія як об’єкт лінгвістики

    Get PDF
    У статті проаналізовано сучасні праці теоретичної лексикографії, розглянуто погляди науковців на дефініцію терміна “лексикографія”.The article gives the analysis of contemporary works on theoretical lexicography and rewiews the approaches of different scientists to the term “lexicography”

    Questionnaires to Assess Facilitators and Barriers of Early Mobilization in Critically Ill Patients; Which One to Choose? A Systematic Review

    Get PDF
    Implementing and performing early mobilization is a complex process requiring multidisciplinary input and cooperation. To gain insight in its facilitators and barriers, various surveys have been developed. A systematic review was conducted, to identify the psychometric properties, feasibility and suitability of questionnaires to assess facilitators and barriers of early mobilization in critically ill patients. Data were extracted regarding a.o. definition of early mobilization, development, psychometric properties, content and themes, question format. The search identified 537 publications of which 13 unique questionnaires were included. The questionnaires showed wide variation in extensiveness of development. Only six questionnaires actually assessed validity and reliability. Which questionnaire to choose depends on the aim of its use, required level of detail and specifics of the ICU, though three questionnaires were recommended as their definition of early mobilization covered a broad range of activities, including nursing related mobility activities. International consensus on what constitutes early mobilization is desirable

    The degree of joint range of motion limitations after burn injuries during recovery

    Get PDF
    Introduction: The aim of this study was to determine the degree of ROM limitations of extremities, joints and planes of motion after burns and its prevalence over time. Method: The database of a longitudinal multicenter cohort study in the Netherlands (2011–2012) was used. From patients with acute burns involving the neck, shoulder, elbow, wrist, hip, knee and ankle joints that had surgery, ROM of 17 planes of motion was assessed by goniometry at 3, 6 weeks, 3–6–9 and 12 months after burns and at discharge. Results: At 12 months after injury, 12 out of 17 planes of motion demonstrated persistent joint limitations. The five unlimited planes of motion were all of the lower extremity. The most severely limited joints at 12 months were the neck, ankle, wrist and shoulder. The lower extremity was more severely limited in the early phase of recovery whereas at 12 months the upper extremity was more severely limited. Conclusion: The degree of ROM limitations and prevalence varied over time between extremities, joints and planes of motion. This study showed which joints and planes of motion should be watched specifically concerning the development of scar contracture
    corecore