5 research outputs found

    Zolpidem is a potent stoichiometry-selective modulator of α1β3 GABAA receptors : evidence of a novel benzodiazepine site in the α1-α1 interface

    Get PDF
    Zolpidem is not a typical GABAA receptor hypnotic. Unlike benzodiazepines, zolpidem modulates tonic GABA currents in the rat dorsal motor nucleus of the vagus, exhibits residual effects in mice lacking the benzodiazepine binding site, and improves speech, cognitive and motor function in human patients with severe brain injury. The receptor by which zolpidem mediates these effects is not known. In this study we evaluated binary α1β3 GABAA receptors in either the 3α1:2β3 or 2α1:3β3 subunit stoichiometry, which differ by the existence of either an α1-α1 interface, or a β3-β3 interface, respectively. Both receptor stoichiometries are readily expressed in Xenopus oocytes, distinguished from each other by using GABA, zolpidem, diazepam and Zn2+. At the 3α1:2β3 receptor, clinically relevant concentrations of zolpidem enhanced GABA in a flumazenil-sensitive manner. The efficacy of diazepam was significantly lower compared to zolpidem. No modulation by either zolpidem or diazepam was detected at the 2α1:3β3 receptor, indicating that the binding site for zolpidem is at the α1-α1 interface, a site mimicking the classical α1-γ2 benzodiazepine site. Activating α1β3 (3α1:2β3) receptors may, in part, mediate the physiological effects of zolpidem observed under distinct physiological and clinical conditions, constituting a potentially attractive drug target

    Antidepressant treatment differentially affects the phenotype of high and low stress reactive mice

    No full text
    Modelling key endophenotypes can be a powerful approach to gain insight into mechanisms underlying the aetiology and pathophysiology of neuropsychiatric disorders. Based on evidence of stress hormone system dysregulations in depression, the Stress Reactivity (SR) mouse model has been generated by a selective breeding approach for extremes in HPA axis reactivity, resulting in high (HR), intermediate (IR) and low (LR) reactive mice. The characterisation of their phenotypic alterations has highlighted many similarities of HR and LR mice with the melancholic and atypical depression, respectively. We therefore aimed to examine whether the antidepressant fluoxetine (10 mg/kg/day i.p., 4–5 weeks) can ameliorate the phenotypic characteristics of HR and LR mice in neuroendocrine functions (HPA axis basal activity, stress reactivity, negative feedback), emotional reactivity/coping-strategy (open field, forced swim tests), spatial learning/memory (Morris water-maze) and hippocampal neurogenesis. Line differences in HPA axis reactivity were maintained under fluoxetine treatment. However, we observed fluoxetine effects on glucocorticoid-induced negative feedback, stress-coping behaviours, cognitive functions and neurogenesis. Specifically, our results revealed line-dependent consequences of fluoxetine treatment: (1) an amelioration of the ‘melancholic-like’ features of HR mice (reversing the negative feedback resistance, the hyperactive coping style and the memory deficits; increasing hippocampal neurogenesis); (2) an exacerbation of the phenotypic deviations of LR mice (increasing their pronounced negative feedback and passive coping style). Thus, these findings support the predictive validity of antidepressant treatment in the HR mouse line and emphasize the translational value of the SR mouse model for the development of therapeutic strategies based on endophenotype-driven classifications

    Targeting GABA<sub>C</sub> Receptors Improves Post-Stroke Motor Recovery

    No full text
    Ischemic stroke remains a leading cause of disability worldwide, with limited treatment options available. This study investigates GABAC receptors as novel pharmacological targets for stroke recovery. The expression of ρ1 and ρ2 mRNA in mice were determined in peri-infarct tissue following photothrombotic motor cortex stroke. (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (R)-4-ACPBPA and (S)-4-ACPBPA were assessed using 2-elecotrode voltage electrophysiology in Xenopus laevis oocytes. Stroke mice were treated for 4 weeks with either vehicle, the α5-selective negative allosteric modulator, L655,708, or the ρ1/2 antagonists, (R)-4-ACPBPA and (S)-4-ACPBPA respectively from 3 days post-stroke. Infarct size and expression levels of GAT3 and reactive astrogliosis were determined using histochemistry and immunohistochemistry respectively, and motor function was assessed using both the grid-walking and cylinder tasks. After stroke, significant increases in ρ1 and ρ2 mRNAs were observed on day 3, with ρ2 showing a further increase on day 7. (R)- and (S)-4-ACPBPA are both potent antagonists at ρ2 and only weak inhibitors of α5β2γ2 receptors. Treatment with either L655,708, (S)-4-ACPBPA (ρ1/2 antagonist; 5 mM only), or (R)-4-ACPBPA (ρ2 antagonist; 2.5 and 5 mM) from 3 days after stroke resulted in a significant improvement in motor recovery on the grid-walking task, with L655,708 and (R)-4-ACPBPA also showing an improvement in the cylinder task. Infarct size was unaffected, and only (R)-4-ACPBPA significantly increased peri-infarct GAT3 expression and decreased the level of reactive astrogliosis. Importantly, inhibiting GABAC receptors affords significant improvement in motor function after stroke. Targeting the ρ-subunit could provide a novel delayed treatment option for stroke recovery
    corecore