270 research outputs found

    Structure-Enabled Discovery of a Stapled Peptide Inhibitor to Target the Oncogenic Transcriptional Repressor TLE1.

    Get PDF
    TLE1 is an oncogenic transcriptional co-repressor that exerts its repressive effects through binding of transcription factors. Inhibition of this protein-protein interaction represents a putative cancer target, but no small-molecule inhibitors have been published for this challenging interface. Herein, the structure-enabled design and synthesis of a constrained peptide inhibitor of TLE1 is reported. The design features the introduction of a four-carbon-atom linker into the peptide epitope found in many TLE1 binding partners. A concise synthetic route to a proof-of-concept peptide, cycFWRPW, has been developed. Biophysical testing by isothermal titration calorimetry and thermal shift assays showed that, although the constrained peptide bound potently, it had an approximately five-fold higher Kd than that of the unconstrained peptide. The co-crystal structure suggested that the reduced affinity was likely to be due to a small shift of one side chain, relative to the otherwise well-conserved conformation of the acyclic peptide. This work describes a constrained peptide inhibitor that may serve as the basis for improved inhibitors

    Structure of the Cytoplasmic Loop between Putative Helices II and III of the Mannitol Permease of Escherichia coli: A Tryptophan and 5-Fluorotryptophan Spectroscopy Study

    Get PDF
    In this work, four single tryptophan (Trp) mutants of the dimeric mannitol transporter of Escherichia coli, EIImtl, are characterized using Trp and 5-fluoroTrp (5-FTrp) fluorescence spectroscopy. The four positions, 97, 114, 126, and 133, are located in a region shown by recent studies to be involved in the mannitol translocation process. To spectroscopically distinguish between the Trp positions in each subunit of dimeric EIImtl, 5-FTrp was biosynthetically incorporated because of its much simpler photophysics compared to those of Trp. The steady-state and time-resolved fluorescence methodologies used point out that all four positions are in structured environments, both in the absence and in the presence of a saturating concentration of mannitol. The fluorescence decay of all 5-FTrp-containing mutants was highly homogeneous, suggesting similar microenvironments for both probes per dimer. However, Stern-Volmer quenching experiments using potassium iodide indicate different solvent accessibilities for the two probes at positions 97 and 133. A 5 Å two-dimensional (2D) projection map of the membrane-embedded IICmtl dimer showing 2-fold symmetry is available. The results of this work are in better agreement with a 7 Å projection map from a single 2D crystal on which no symmetry was imposed.

    The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

    Get PDF
    The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions

    Rapid Discovery of Pyrido[3,4- d ]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach

    Get PDF
    Monopolar spindle 1 (MPS1) plays a central role in the transition of cells from metaphase to anaphase and is one of the main components of the spindle assembly checkpoint. Chromosomally unstable cancer cells rely heavily on MPS1 to cope with the stress arising from abnormal numbers of chromosomes and centrosomes and are thus more sensitive to MPS1 inhibition than normal cells. We report the discovery and optimization of a series of new pyrido[3,4-d]pyrimidine based inhibitors via a structure-based hybridization approach from our previously reported inhibitor CCT251455 and a modestly potent screening hit. Compounds in this novel series display excellent potency and selectivity for MPS1, which translates into biomarker modulation in an in vivo human tumor xenograft mode

    Discovering cell-active BCL6 inhibitors: effectively combining biochemical HTS with multiple biophysical techniques, X-ray crystallography and cell-based assays.

    Get PDF
    By suppressing gene transcription through the recruitment of corepressor proteins, B-cell lymphoma 6 (BCL6) protein controls a transcriptional network required for the formation and maintenance of B-cell germinal centres. As BCL6 deregulation is implicated in the development of Diffuse Large B-Cell Lymphoma, we sought to discover novel small molecule inhibitors that disrupt the BCL6-corepressor protein-protein interaction (PPI). Here we report our hit finding and compound optimisation strategies, which provide insight into the multi-faceted orthogonal approaches that are needed to tackle this challenging PPI with small molecule inhibitors. Using a 1536-well plate fluorescence polarisation high throughput screen we identified multiple hit series, which were followed up by hit confirmation using a thermal shift assay, surface plasmon resonance and ligand-observed NMR. We determined X-ray structures of BCL6 bound to compounds from nine different series, enabling a structure-based drug design approach to improve their weak biochemical potency. We developed a time-resolved fluorescence energy transfer biochemical assay and a nano bioluminescence resonance energy transfer cellular assay to monitor cellular activity during compound optimisation. This workflow led to the discovery of novel inhibitors with respective biochemical and cellular potencies (IC50s) in the sub-micromolar and low micromolar range

    Mechanism of the Very Efficient Quenching of Tryptophan Fluorescence in Human γD- and γS-Crystallins: The γ-Crystallin Fold May Have Evolved To Protect Tryptophan Residues from Ultraviolet Photodamage†

    Get PDF
    Proteins exposed to UV radiation are subject to irreversible photodamage through covalent modification of tryptophans (Trps) and other UV-absorbing amino acids. Crystallins, the major protein components of the vertebrate eye lens that maintain lens transparency, are exposed to ambient UV radiation throughout life. The duplicated β-sheet Greek key domains of β- and γ-crystallins in humans and all other vertebrates each have two conserved buried Trps. Experiments and computation showed that the fluorescence of these Trps in human γD-crystallin is very efficiently quenched in the native state by electrostatically enabled electron transfer to a backbone amide [Chen et al. (2006) Biochemistry 45, 11552−11563]. This dispersal of the excited state energy would be expected to minimize protein damage from covalent scission of the excited Trp ring. We report here both experiments and computation showing that the same fast electron transfer mechanism is operating in a different crystallin, human γS-crystallin. Examination of solved structures of other crystallins reveals that the Trp conformation, as well as favorably oriented bound waters, and the proximity of the backbone carbonyl oxygen of the n − 3 residues before the quenched Trps (residue n), are conserved in most crystallins. These results indicate that fast charge transfer quenching is an evolved property of this protein fold, probably protecting it from UV-induced photodamage. This UV resistance may have contributed to the selection of the Greek key fold as the major lens protein in all vertebrates.National Eye Institute (Grant EY 015834

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Post-Exposure Vaccination Improves Gammaherpesvirus Neutralization

    Get PDF
    Herpesvirus carriers transmit infection despite making virus-specific antibodies. Thus, their antibody responses are not necessarily optimal. An important question for infection control is whether vaccinating carriers might improve virus neutralization. The antibody response to murine gamma-herpesvirus-68 (MHV-68) blocks cell binding, but fails to block and even enhances an IgG Fc receptor-dependent infection of myeloid cells. Viral membrane fusion therefore remains intact. Although gH/gL-specific monoclonal antibodies can block infection at a post-binding step close to membrane fusion, gH/gL is a relatively minor antibody target in virus carriers. We show here that gH/gL-specific antibodies can block both Fc receptor-independent and Fc receptor-dependent infections, and that vaccinating virus carriers with a gH/gL fusion protein improves their capacity for virus neutralization both in vitro and in vivo. This approach has the potential to reduce herpesvirus transmission

    Synthesis of a square-planar rhodium alkylidene N-heterocyclic carbene complex and its reactivity toward alkenes

    Get PDF
    The first rhodium alkylidene square-planar complex stabilized by an N-heterocyclic carbene ligand, RhCl(-CHPh)(IPr)PPh3 (2; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-carbene), has been prepared by reaction of RhCl(IPr)(PPh3)2 (1) with phenyldiazomethane and its dynamic behavior in solution studied. Treatment of 2 with alkenes results in the formation of the ¿2-olefin complexes RhCl(¿2-CH2-CHR)(IPr)PPh3 (3, R = H; 4, R = Ph; 5, R = OEt) and new olefins arising from the coupling of the alkylidene with the alkenes, likely via a metallacyclobutane intermediate

    Mechanism of PP2A-mediated IKKβ dephosphorylation: a systems biological approach

    Get PDF
    BACKGROUND: Biological effects of nuclear factor-kappaB (NF kappaB) can differ tremendously depending on the cellular context. For example, NF kappaB induced by interleukin-1 (IL-1) is converted from an inhibitor of death receptor induced apoptosis into a promoter of ultraviolet-B radiation (UVB)-induced apoptosis. This conversion requires prolonged NF kappaB activation and is facilitated by IL-1 + UVB-induced abrogation of the negative feedback loop for NF kappaB, involving a lack of inhibitor of kappaB (I kappaB alpha) protein reappearance. Permanent activation of the upstream kinase IKK beta results from UVB-induced inhibition of the catalytic subunit of Ser-Thr phosphatase PP2A (PP2Ac), leading to immediate phosphorylation and degradation of newly synthesized I kappaB alpha. RESULTS: To investigate the mechanism underlying the general PP2A-mediated tuning of IKK beta phosphorylation upon IL-1 stimulation, we have developed a strictly reduced mathematical model based on ordinary differential equations which includes the essential processes concerning the IL-1 receptor, IKK beta and PP2A. Combining experimental and modelling approaches we demonstrate that constitutively active, but not post-stimulation activated PP2A, tunes out IKK beta phosphorylation thus allowing for I kappaB alpha resynthesis in response to IL-1. Identifiability analysis and determination of confidence intervals reveal that the model allows reliable predictions regarding the dynamics of PP2A deactivation and IKK beta phosphorylation. Additionally, scenario analysis is used to scrutinize several hypotheses regarding the mode of UVB-induced PP2Ac inhibition. The model suggests that down regulation of PP2Ac activity, which results in prevention of I kappaB alpha reappearance, is not a direct UVB action but requires instrumentality. CONCLUSION: The model developed here can be used as a reliable building block of larger NF kappa B models and offers comprehensive simplification potential for future modeling of NF kappa B signaling. It gives more insight into the newly discovered mechanisms for IKK deactivation and allows for substantiated predictions and investigation of different hypotheses. The evidence of constitutive activity of PP2Ac at the IKK complex provides new insights into the feedback regulation of NF kappa B, which is crucial for the development of new anti-cancer strategies
    corecore