2,820 research outputs found

    Three-micron spectra of AGB stars and supergiants in nearby galaxies

    Get PDF
    The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C2H2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5micron HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in both the extra-galactic and Galactic carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one possible detection in a low quality spectrum. The limits on the equivalent widths of the SiO bands are below the expectation of up to 30angstrom for LMC metallicity. Several possible explanations are discussed. The observations imply that LMC and SMC carbon stars could reach mass-loss rates as high as their Galactic counterparts, because there are more carbon atoms available and more carbonaceous dust can be formed. On the other hand, the lack of SiO suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&

    Climate change impact assessment as function of model inaccuracy

    No full text
    International audienceNumerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario model errors will level out. For a polder in The Netherlands an innovative procedure has been introduced, referred to as the Model-Scenario-Ratio (MSR), to express model inaccuracy on climate change impact assessment. MSR values close to 1, indicating that impact assessment is mainly a function of the scenario itself rather than of the quality of the model, were found for most indicators evaluated. More extreme climate change scenarios and indicators based on threshold values showed lower MSR values, indicating that model accuracy is an important component of the climate change impact assessment. It was concluded that the MSR approach can be applied easily and will lead to more robust impact assessment analyses

    Very Large Telescope three micron spectra of dust-enshrouded red giants in the Large Magellanic Cloud

    Full text link
    We present ESO/VLT spectra in the 2.9--4.1 micron range for a large sample of infrared stars in the Large Magellanic Cloud (LMC), selected on the basis of MSX and 2MASS colours to be extremely dust-enshrouded AGB star candidates. Out of 30 targets, 28 are positively identified as carbon stars, significantly adding to the known population of optically invisible carbon stars in the LMC. We also present spectra for six IR-bright stars in or near three clusters in the LMC, identifying four of them as carbon stars and two as oxygen-rich supergiants. We analyse the molecular bands of C2H2 at 3.1 and 3.8 micron, HCN at 3.57 micron, and sharp absorption features in the 3.70--3.78 micron region that we attribute to C2H2. There is evidence for a generally high abundance of C2H2 in LMC carbon stars, suggestive of high carbon-to-oxygen abundance ratios at the low metallicity in the LMC. The low initial metallicity is also likely to have resulted in less abundant HCN and CS. The sample of IR carbon stars exhibits a range in C2H2:HCN abundance ratio. We do not find strong correlations between the properties of the molecular atmosphere and circumstellar dust envelope, but the observed differences in the strengths and shapes of the absorption bands can be explained by differences in excitation temperature. High mass-loss rates and strong pulsation would then be seen to be associated with a large scale height of the molecular atmosphere.Comment: Accepted for publication in Astronomy and Astrophysics. 20 pages. Figure 11 is degraded for posting on astro-p

    Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    Get PDF
    International audienceNumerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario model errors will level out. For a polder in The Netherlands an innovative procedure has been introduced, referred to as the Model-Scenario-Ratio (MSR), to express model inaccuracy on climate change impact assessment studies based on simulation models comparing a reference situation to a climate change situation. The SWAP (Soil Water Atmosphere Plant) model was used for the case study and the reference situation was compared to two climate change scenarios. MSR values close to 1, indicating that impact assessment is mainly a function of the scenario itself rather than of the quality of the model, were found for most indicators evaluated. A climate change scenario with enhanced drought conditions and indicators based on threshold values showed lower MSR values, indicating that model accuracy is an important component of the climate change impact assessment. It was concluded that the MSR approach can be applied easily and will lead to more robust impact assessment analyses

    Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion

    Get PDF
    We study the charge-density dynamics within the two-dimensional extended Hubbard model in the presence of long-range Coulomb interaction across the metal-insulator transition point. To take into account strong correlations we start from self-consistent extended dynamical mean-field theory and include non-local dynamical vertex corrections through a ladder approximation to the polarization operator. This is necessary to fulfill charge conservation and to describe plasmons in the correlated state. The calculated plasmon spectra are qualitatively different from those in the random-phase approximation: they exhibit a spectral density transfer and a renormalized dispersion with enhanced deviation from the canonical q\sqrt{q}-behavior. Both features are reminiscent of interaction induced changes found in single-electron spectra of strongly correlated systems.Comment: 5 pages, 5 figures + appendix (3 pages, 1 figure

    Socioeconomic status and colon cancer incidence: a prospective cohort study.

    Get PDF
    The association between socioeconomic status and colon cancer was investigated in a prospective cohort study that started in 1986 in The Netherlands among 120,852 men and women aged 55-69 years. At baseline, data on socioeconomic status, alcohol consumption and other dietary and non-dietary covariates were collected by means of a self-administered questionnaire. For data analysis a case-cohort approach was used, in which the person-years at risk were estimated using a randomly selected subcohort (1688 men and 1812 women). After 3.3 years of follow-up, 312 incident colon cancer cases were detected: 157 men and 155 women. After adjustment for age, we found a positive association between colon cancer risk and highest level of education (trend P = 0.13) and social standing (trend P = 0.008) for men. Also, male, upper white-collar workers had a higher colon cancer risk than blue-collar workers (RR = 1.42, 95% CI 0.95-2.11). Only the significant association between social standing and colon cancer risk persisted after additional adjustment for other risk factors for colon cancer (trend P = 0.005), but the higher risk was only found in the highest social standing category (RR highest/lowest social standing = 2.60, 95% CI 1.31-5.14). In women, there were no clear associations between the socioeconomic status indicators and colon cancer

    Self-consistent Dual Boson approach to single-particle and collective excitations in correlated systems

    Get PDF
    We propose an efficient dual boson scheme, which extends the DMFT paradigm to collective excitations in correlated systems. The theory is fully self-consistent both on the one- and on the two-particle level, thus describing the formation of collective modes as well as the renormalization of electronic and bosonic spectra on equal footing. The method employs an effective impurity model comprising both fermionic and bosonic hybridization functions. Only single- and two-electron Green's functions of the reference problem enter the theory, due to the optimal choice of the self-consistency condition for the effective bosonic bath. We show that the theory is naturally described by a dual Luttinger-Ward functional and obeys the relevant conservation laws.Comment: 17 pages, 12 figure

    Chemical evolution of star clusters

    Full text link
    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the globular clusters formed. Instead, a formation deep within the proto-Galaxy or within dark-matter minihaloes might be favoured. Not all globular clusters may have formed and evolved similarly. In particular, we may need to distinguish Galactic halo from Galactic bulge clusters.Comment: 27 pages, 2 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 6 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil

    Conservation in two-particle self-consistent extensions of dynamical-mean-field-theory

    Full text link
    Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model, because it allows to suppress the antiferromagnetic phase transition in two-dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge- and longitudinal spin channel, the double occupancy of the lattice and the impurity are no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge- and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.Comment: 17 pages, 9 figure
    corecore