17 research outputs found

    The Dioxin Crisis as Experiment To Determine Poultry-Related Campylobacter Enteritis

    Get PDF
    In June 1999, the dioxin crisis, caused by dioxin-contaminated feed components, exploded in Belgium, resulting in withdrawal of chicken and eggs from the market. Through the sentinel surveillance system, a decrease in Campylobacter infections during June 1999 was noticed. A model was generated with the reports from preceding years (1994 to 1998), and a prediction of the number of infections in 1999 was calculated. The model shows a significant decline (40%) in the number of infections, mainly because of the withdrawal of poultry. The use of a disaster as an epidemiologic tool offers a unique opportunity to observe exceptional changes in the occurrence of infections or other diseases

    Error-corrected quantum repeaters with GKP qudits

    Full text link
    The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode higher-dimensional qudits into individual bosonic modes with, for instance, photonic excitations. Since photons enable the reliable transmission of quantum information over long distances and since GKP states subject to photon loss can be recovered to some extent, the GKP code has found recent applications in theoretical investigations of quantum communication protocols. While previous studies have primarily focused on GKP qubits, the possible practical benefits of higher-dimensional GKP qudits are hitherto widely unexplored. In this paper, we carry out performance analyses for three quantum repeater protocols based on GKP qudits including concatenations with a multi-qudit quantum polynomial code. We find that the potential data transmission gains for qudits are often hampered by their decreased GKP error-correcting capabilities. However, we also identify parameter regimes in which having access to an increased number of quantum levels per mode can enhance the theoretically achievable secret-key rate of the quantum repeater. Some of our protocols share the attractive feature that local processing and complete error syndrome identification are realizable without online squeezing. Provided a supply of suitable multi-mode GKP states is available, this can be realized with a minimal set of passive linear optical operations, even when the logical qudits are composed of many physical qudits.Comment: 19+11 pages, 6+4 figures. Comments welcom

    The European Commission’s Task Force on Bioterrorism

    Get PDF
    In response to the increased threat of bioterrorism, a task force on health security was established in the European Commission. Task force members address a broad range of issues related to preparedness for and response to bioterrorist events and seek to bring about a greater collaboration between the European Union member states

    Extending Quantum Links: Modules for Fiber- and Memory-Based Quantum Repeaters

    Get PDF
    We analyze elementary building blocks for quantum repeaters based on fiber channels and memory stations. Implementations are considered for three different physical platforms, for which suitable components are available: quantum dots, trapped atoms and ions, and color centers in diamond. We evaluate and compare the performances of basic quantum repeater links for these platforms both for present-day, state-of-the-art experimental parameters as well as for parameters that could in principle be reached in the future. The ultimate goal is to experimentally explore regimes at intermediate distances, up to a few 100 km, in which the repeater-assisted secret key transmission rates exceed the maximal rate achievable via direct transmission. We consider two different protocols, one of which is better adapted to the higher source clock rate and lower memory coherence time of the quantum dot platform, while the other circumvents the need of writing photonic quantum states into the memories in a heralded, non-destructive fashion. The elementary building blocks and protocols can be connected in a modular form to construct a quantum repeater system that is potentially scalable to large distances.Comment: 48 pages in Word style, "White Paper" of Q.Link.X Consortiu

    Identification of Z-Tyr-Ala-CHN 2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2.

    Get PDF
    The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN 2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN 2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN 2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication

    Quantum error correction with higher Gottesman-Kitaev-Preskill codes: minimal measurements and linear optics

    Full text link
    We propose two schemes to obtain Gottesman-Kitaev-Preskill (GKP) error syndromes by means of linear optical operations, homodyne measurements and GKP ancillae. This includes showing that for a concatenation of GKP codes with a [n,k,d][n,k,d] stabilizer code only 2n2n measurements are needed in order to obtain the complete syndrome information, significantly reducing the number of measurements in comparison to the canonical concatenated measurement scheme and at the same time generalizing linear-optics-based syndrome detections to higher GKP codes. Furthermore, we analyze the possibility of building the required ancilla states from single-mode states and linear optics. We find that for simple GKP codes this is possible, whereas for concatenations with qubit Calderbank-Shor-Steane (CSS) codes of distance d3d\geq3 it is not. We also consider the canonical concatenated syndrome measurements and propose methods for avoiding crosstalk between ancillae. In addition, we make use of the observation that the concatenation of a GKP code with a stabilizer code forms a lattice in order to see the analog information decoding of such codes from a different perspective allowing for semi-analytic calculations of the logical error rates.Comment: 22 pages, 4 figures. Comments are welcom
    corecore