83 research outputs found
Ijzerenwegstraat te Tienen (gem. Tienen) Archeologisch vooronderzoek door middel van proefputten
Dit rapport werd ingediend bij het agentschap samen met een aantal afzonderlijke digitale bijlagen. Een aantal van deze bijlagen zijn niet inbegrepen in dit pdf document en zijn niet online beschikbaar. Sommige bijlagen (grondplannen, fotos, spoorbeschrijvingen, enz.) kunnen van belang zijn voor een betere lezing en interpretatie van dit rapport. Indien u deze bijlagen wenst te raadplegen kan u daarvoor contact opnemen met: [email protected]
Reducing Discomfort While Measuring Crown-Heel Length in Neonates
To assess the degree of discomfort caused by length measurement in neonates, performed with one or both lower limbs extended, on the first and second day after birth, with either one or both lower limbs extended.
METHODS: Healthy full-term neonates were systematically sampled during the months of February and March 2004. Crown-heel length was measured, using a 1-mm precision neonatometer, at approximately 8 h and 32 h after birth, with one and both lower limbs extended. The Neonatal Facial Coding System was used to assess discomfort during measurements. Data were analysed by parametric and non-parametric tests as appropriate.
RESULTS: Whatever the measurement technique, discomfort scores are significantly higher during the length measurement than at baseline. Whenever length measurements are performed, discomfort scores are significantly higher when extending both lower limbs rather than one lower limb (p < 0.006). The measured length is greater with one lower limb extended; however, the difference decreases over time, being 0.19 cm (95% CI 0.1-0.3; p < 0.001) at approximately 32 h of age. No significant differences in length were found between measurements at approximately 8 or 32 h, regardless of the technique used. The best correlation between length measurements with one or both lower limbs extended was observed at approximately 32 h after birth (r = 0.98).
CONCLUSION: Measuring crown-heel length is a distressful procedure for the neonate. Measurements with one lower limb extended result in less discomfort than when both lower limbs are extended, without decreasing the accuracy
Dennenstraat te Beringen (gem. Beringen) Archeologisch vooronderzoek door middel van proefsleuven
Dit rapport werd ingediend bij het agentschap samen met een aantal afzonderlijke digitale bijlagen. Een aantal van deze bijlagen zijn niet inbegrepen in dit pdf document en zijn niet online beschikbaar. Sommige bijlagen (grondplannen, fotos, spoorbeschrijvingen, enz.) kunnen van belang zijn voor een betere lezing en interpretatie van dit rapport. Indien u deze bijlagen wenst te raadplegen kan u daarvoor contact opnemen met: [email protected]
The T7-Primer Is a Source of Experimental Bias and Introduces Variability between Microarray Platforms
Eberwine(-like) amplification of mRNA adds distinct 6–10 bp nucleotide stretches to the 5′ end of amplified RNA transcripts. Analysis of over six thousand microarrays reveals that probes containing motifs complementary to these stretches are associated with aberrantly high signals up to a hundred fold the signal observed in unaffected probes. This is not observed when total RNA is used as target source. Different T7 primer sequences are used in different laboratories and platforms and consequently different T7 primer bias is observed in different datasets. This will hamper efforts to compare data sets across platforms
Targeting pathogen metabolism without collateral damage to the host
The development of drugs that can inactivate disease-causing cells (e.g. cancer cells or parasites) without causing collateral damage to healthy or to host cells is complicated by the fact that many proteins are very similar between organisms. Nevertheless, due to subtle, quantitative differences between the biochemical reaction networks of target cell and host, a drug can limit the flux of the same essential process in one organism more than in another. We identified precise criteria for this â €network-based' drug selectivity, which can serve as an alternative or additive to structural differences. We combined computational and experimental approaches to compare energy metabolism in the causative agent of sleeping sickness, Trypanosoma brucei, with that of human erythrocytes, and identified glucose transport and glyceraldehyde-3-phosphate dehydrogenase as the most selective antiparasitic targets. Computational predictions were validated experimentally in a novel parasite-erythrocytes co-culture system. Glucose-transport inhibitors killed trypanosomes without killing erythrocytes, neurons or liver cells
Gene Expression Profiles from Formalin Fixed Paraffin Embedded Breast Cancer Tissue Are Largely Comparable to Fresh Frozen Matched Tissue
BACKGROUND AND METHODS: Formalin Fixed Paraffin Embedded (FFPE) samples represent a valuable resource for cancer research. However, the discovery and development of new cancer biomarkers often requires fresh frozen (FF) samples. Recently, the Whole Genome (WG) DASL (cDNA-mediated Annealing, Selection, extension and Ligation) assay was specifically developed to profile FFPE tissue. However, a thorough comparison of data generated from FFPE RNA and Fresh Frozen (FF) RNA using this platform is lacking. To this end we profiled, in duplicate, 20 FFPE tissues and 20 matched FF tissues and evaluated the concordance of the DASL results from FFPE and matched FF material. METHODOLOGY AND PRINCIPAL FINDINGS: We show that after proper normalization, all FFPE and FF pairs exhibit a high level of similarity (Pearson correlation >0.7), significantly larger than the similarity between non-paired samples. Interestingly, the probes showing the highest correlation had a higher percentage G/C content and were enriched for cell cycle genes. Predictions of gene expression signatures developed on frozen material (Intrinsic subtype, Genomic Grade Index, 70 gene signature) showed a high level of concordance between FFPE and FF matched pairs. Interestingly, predictions based on a 60 gene DASL list (best match with the 70 gene signature) showed very high concordance with the MammaPrint® results. CONCLUSIONS AND SIGNIFICANCE: We demonstrate that data generated from FFPE material with the DASL assay, if properly processed, are comparable to data extracted from the FF counterpart. Specifically, gene expression profiles for a known set of prognostic genes for a specific disease are highly comparable between two conditions. This opens up the possibility of using both FFPE and FF material in gene expressions analyses, leading to a vast increase in the potential resources available for cancer research
LC–MS-based absolute metabolite quantification:Application to metabolic flux measurement in trypanosomes
Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite, Trypanosoma brucei. In the mammalian bloodstream, the trypanosome’s metabolism differs significantly from that of its host. For example, the parasite relies exclusively on glycolysis for energy source. Recently, computational and mathematical models of trypanosome metabolism have been generated to assist in understanding the parasite metabolism with the aim of facilitating drug development. Optimisation of these models requires quantitative information, including metabolite concentrations and/or metabolic fluxes that have been hitherto unavailable on a large scale. Here, we have implemented an LC–MS-based method that allows large scale quantification of metabolite levels by using U-13C-labelled E. coli extracts as internal standards. Known amounts of labelled E. coli extract were added into the parasite samples, as well as calibration standards, and used to obtain calibration curves enabling us to convert intensities into concentrations. This method allowed us to reliably quantify the changes of 43 intracellular metabolites and 32 extracellular metabolites in the medium over time. Based on the absolute quantification, we were able to compute consumption and production fluxes. These quantitative data can now be used to optimise computational models of parasite metabolism
The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome
Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome – NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome – NL interactions
Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers
Background: Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. Methods: To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1?/?;p53?/?, Brca2?/?;p53?/? and p53?/? mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Results: Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYCassociated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2?/?;p53?/? tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. Conclusions: The selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies.MediamaticsElectrical Engineering, Mathematics and Computer Scienc
Ubiquitin E3 Ligase Ring1b/Rnf2 of Polycomb Repressive Complex 1 Contributes to Stable Maintenance of Mouse Embryonic Stem Cells
Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells.We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis. The absence of Ring1b results in aberrant expression of key developmental genes and deregulation of specific differentiation-related pathways, including TGFbeta signaling, cell cycle regulation and cellular communication. Moreover, ES cell markers, including Zfp42/Rex-1 and Sox2, are downregulated. Importantly, retained expression of ES cell regulators Oct4, Nanog and alkaline phosphatase indicates that Ring1b-deficient ES cells retain important ES cell specific characteristics. Comparative analysis of our expression profiling data with previously published global binding studies shows that the genes that are bound by Ring1b in ES cells have bivalent histone marks, i.e. both active H3K4me3 and repressive H3K27me3, or the active H3K4me3 histone mark alone and are associated with CpG-'rich' promoters. However, deletion of Ring1b results in deregulation, mainly derepression, of only a subset of these genes, suggesting that additional silencing mechanisms are involved in repression of the other Ring1b bound genes in ES cells.Ring1b is essential to stably maintain an undifferentiated state of mouse ES cells by repressing genes with important roles during differentiation and development. These genes are characterized by high CpG content promoters and bivalent histone marks or the active H3K4me3 histone mark alone
- …