111 research outputs found

    Full-length genome sequence of a simian immunodeficiency virus (SIV) infecting a captive agile mangabey (Cercocebus agilis) is closely related to SIVrcm infecting wild red-capped mangabeys (Cercocebus torquatus) in Cameroon

    Get PDF
    Simian immunodeficiency viruses (SIVs) are lentiviruses that infect an extensive number of wild African primate species. Here we describe for the first time SIV infection in a captive agile mangabey (Cercocebus agilis) from Cameroon. Phylogenetic analysis of the full-length genome sequence of SIVagi-00CM312 showed that this novel virus fell into the SIVrcm lineage and was most closely related to a newly characterized SIVrcm strain (SIVrcm-02CM8081) from a wild-caught red-capped mangabey (Cercocebus torquatus) from Cameroon. In contrast to red-capped mangabeys, no 24 bp deletion in CCR5 has been observed in the agile mangabey. Further studies on wild agile mangabeys are needed to determine whether agile and red-capped mangabeys are naturally infected with the same SIV lineage, or whether this agile mangabey became infected with an SIVrcm strain in captivity. However, our study shows that agile mangabeys are susceptible to SIV infection

    Genetic diversity of simian lentivirus in wild De Brazza’s monkeys (Cercopithecus neglectus) in Equatorial Africa

    Get PDF
    De Brazza’s monkeys (Cercopithecus neglectus) are non-human primates (NHP) living in Equatorial Africa from South Cameroon through the Congo-Basin to Uganda. As most of the NHP living in sub-Saharan Africa, they are naturally infected with their own simian lentivirus, SIVdeb. Previous studies confirmed this infection for De Brazza’s from East Cameroon and Uganda. In this report, we studied the genetic diversity of SIVdeb in De Brazza’s monkeys from different geographical areas in South Cameroon and from the Democratic Republic of Congo (DRC). SIVdeb strains from east, central and western equatorial Africa form a species-specific monophyletic lineage. Phylogeographic clustering was observed among SIVdeb strains from Cameroon, the DRC and Uganda, but also among primates from distinct areas in Cameroon. These observations suggest a longstanding virus–host co-evolution. SIVdeb prevalence is high in wild De Brazza’s populations and thus represents a current risk for humans exposed to these primates in central Africa

    Chimpanzee reservoirs of pandemic and nonpandemic HIV-1

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1), the cause of human acquired immunodeficiency syndrome ( AIDS), is a zoonotic infection of staggering proportions and social impact. Yet uncertainty persists regarding its natural reservoir. The virus most closely related to HIV-1 is a simian immunodeficiency virus ( SIV) thus far identified only in captive members of the chimpanzee subspecies Pan troglodytes troglodytes. Here we report the detection of SIVcpz antibodies and nucleic acids in fecal samples from wild-living P.t. troglodytes apes in southern Cameroon, where prevalence rates in some communities reached 29 to 35%. By sequence analysis of endemic SIVcpz strains, we could trace the origins of pandemic ( group M) and nonpandemic ( group N) HIV-1 to distinct, geographically isolated chimpanzee communities. These findings establish P. t. troglodytes as a natural reservoir of HIV-1

    Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses

    Get PDF
    G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5'-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NF\u3baB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5'-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place

    Tetherin-Driven Adaptation of Vpu and Nef Function and the Evolution of Pandemic and Nonpandemic HIV-1 Strains

    Get PDF
    Vpu proteins of pandemic HIV-1 M strains degrade the viral receptor CD4 and antagonize human tetherin to promote viral release and replication. We find that Vpus from SIVgsn, SIVmus and SIVmon infecting Cercopithecus primate species also degrade CD4 and antagonize tetherin. In contrast, SIVcpz, the immediate precursor of HIV-1, whose Vpu shares a common ancestry with SIVgsn/mus/mon Vpu, uses Nef rather than Vpu to counteract chimpanzee tetherin. Human tetherin, however, is resistant to Nef and thus poses a significant barrier to zoonotic transmission of SIVcpz to humans. Remarkably, Vpu from non-pandemic HIV-1 O strains are poor tetherin antagonists while those from the rare group N viruses do not degrade CD4. Thus, only HIV-1 M evolved a fully functional Vpu following the three independent cross-species transmissions that resulted in HIV-1 groups M, N, and O. This may explain why group M viruses are almost entirely responsible for the gobal HIV/AIDS pandemic

    In Heart Failure Patients with Left Bundle Branch Block Single Lead MultiSpot Left Ventricular Pacing Does Not Improve Acute Hemodynamic Response To Conventional Biventricular Pacing. A Multicenter Prospective, Interventional, Non-Randomized Study.

    Get PDF
    Introduction Recent efforts to increase CRT response by multiSPOT pacing (MSP) from multiple bipols on the same left ventricular lead are still inconclusive. Aim The Left Ventricular (LV) MultiSPOTpacing for CRT (iSPOT) study compared the acute hemodynamic response of MSP pacing by using 3 electrodes on a quadripolar lead compared with conventional biventricular pacing (BiV). Methods Patients with left bundle branch block (LBBB) underwent an acute hemodynamic study to determine the %change in LV+dP/dtmax from baseline atrial pacing compared to the following configurations: BiV pacing with the LV lead in a one of lateral veins, while pacing from the distal, mid, or proximal electrode and all 3 electrodes together (i.e. MSP). All measurements were repeated 4 times at 5 different atrioventricular delays. We also measured QRS-width and individual Q-LV durations. Results Protocol was completed in 24 patients, all with LBBB (QRS width 171±20 ms) and 58% ischemic aetiology. The percentage change in LV+dP/dtmax for MSP pacing was 31.0±3.3% (Mean±SE), which was not significantly superior to any BiV pacing configuration: 28.9±3.2% (LV-distal), 28.3±2.7% (LV-mid), and 29.5±3.0% (LV-prox), respectively. Correlation between LV+dP/dtmax and either QRS-width or Q-LV ratio was poor. Conclusions In patients with LBBB MultiSPOT LV pacing demonstrated comparable improvement in contractility to best conventional BiV pacing. Optimization of atrioventricular delay is important for the best performance for both BiV and MultiSPOT pacing configurations. Trial Registration ClinicalTrials.gov NTC0188314

    Human immunodeficiency virus: 25 years of diagnostic and therapeutic strategies and their impact on hepatitis B and C virus

    Get PDF
    The human immunodeficiency virus (HIV) had spread unrecognized in the human population as sexually transmitted disease and was finally identified by its disease AIDS in 1981. Even after the isolation of the causative agent in 1983, the burden and death rate of AIDS accelerated worldwide especially in young people despite the confection of new drugs capable to inhibit virus replication since 1997. However, at least in industrialised countries, this trend could be reversed by the introduction of combination therapy strategies. The design of new drugs is on going; besides the inhibition of the three enzymes of HIV for replication and maturation (reverse transcriptase, integrase and protease), further drugs inhibits fusion of viral and cellular membranes and virus maturation. On the other hand, viral diagnostics had been considerably improved since the emergence of HIV. There was a need to identify infected people correctly, to follow up the course of immune reconstitution of patients by measuring viral load and CD4 cells, and to analyse drug escape mutations leading to drug resistance. Both the development of drugs and the refined diagnostics have been transferred to the treatment of patients infected with hepatitis B virus (HBV) and hepatitis C virus (HCV). This progress is not completed; there are beneficial aspects in the response of the scientific community to the HIV burden for the management of other viral diseases. These aspects are described in this contribution. Further aspects as handling a stigmatising disease, education of self-responsiveness within sexual relationships, and ways for confection of a protective vaccine are not covered

    Mutation of a Single Residue Renders Human Tetherin Resistant to HIV-1 Vpu-Mediated Depletion

    Get PDF
    The recently identified restriction factor tetherin/BST-2/CD317 is an interferon-inducible trans-membrane protein that restricts HIV-1 particle release in the absence of the HIV-1 countermeasure viral protein U (Vpu). It is known that Tantalus monkey CV1 cells can be rendered non-permissive to HIV-1 release upon stimulation with type 1 interferon, despite the presence of Vpu, suggesting species-specific sensitivity of tetherin proteins to viral countermeasures such as Vpu. Here we demonstrate that Tantalus monkey tetherin restricts HIV-1 by nearly two orders of magnitude, but in contrast to human tetherin the Tantalus protein is insensitive to HIV-1 Vpu. We have investigated tetherin's sensitivity to Vpu using positive selection analyses, seeking evidence for evolutionary conflict between tetherin and viral countermeasures. We provide evidence that tetherin has undergone positive selection during primate evolution. Mutation of a single amino acid (showing evidence of positive selection) in the trans-membrane cap of human tetherin to that in Tantalus monkey (T45I) substantially impacts on sensitivity to HIV-1 Vpu, but not on antiviral activity. Finally, we provide evidence that cellular steady state levels of tetherin are substantially reduced by Vpu, and that the T45I mutation abrogates this effect. This study provides evidence that tetherin is important in protecting mammals against viral infection, and that the HIV-1 Vpu–mediated countermeasure is specifically adapted to act against human tetherin. It also emphasizes the power of selection analyses to illuminate the molecular details of host–virus interactions. This work suggests that tetherin binding agents might protect it from viral encoded countermeasures and thus make powerful antivirals
    corecore