43 research outputs found

    Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world

    Get PDF
    Ammonia and ammonium have received less attention than other forms of air pollution, with limited progress in controlling emissions at UK, European and global scales. By contrast, these compounds have been of significant past interest to science and society, the recollection of which can inform future strategies. Sal ammoniac (nĆ«shādir, nao sha) is found to have been extremely valuable in long-distance trade (ca AD 600–1150) from Egypt and China, where 6–8 kg N could purchase a human life, while air pollution associated with nĆ«shādir collection was attributed to this nitrogen form. Ammonia was one of the keys to alchemy—seen as an early experimental mesocosm to understand the world—and later became of interest as ‘alkaline air’ within the eighteenth century development of pneumatic chemistry. The same economic, chemical and environmental properties are found to make ammonia and ammonium of huge relevance today. Successful control of acidifying SO2 and NOx emissions leaves atmospheric NH3 in excess in many areas, contributing to particulate matter (PM2.5) formation, while leading to a new significance of alkaline air, with adverse impacts on natural ecosystems. Investigations of epiphytic lichens and bog ecosystems show how the alkalinity effect of NH3 may explain its having three to five times the adverse effect of ammonium and nitrate, respectively. It is concluded that future air pollution policy should no longer neglect ammonia. Progress is likely to be mobilized by emphasizing the lost economic value of global N emissions ($200 billion yr−1), as part of developing the circular economy for sustainable nitrogen management

    Effects of nitrogen deposition on soil and vegetation in primary succession stages in inland drift sands

    Full text link
    Background and aims Primary succession was studied in acid inland drift sands. Main research questions were: 1) How do vegetation and soil change during succession? 2) How are soil parameters and species abundance affected by atmospheric nitrogen deposition? Methods One hundred sixty-five plots were selected in 21 drift sands throughout The Netherlands, divided over eight succession stages from bare sand to dry heath and within a gradient in nitrogen deposition. Vegetation development and soil parameters were described and water-extractable elements measured and differences between high (>30 kg N ha−1 year−1) and lower nitrogen deposition sites calculated. Results Vegetation cover and height increased during succession. Lichens contributed most to plant species diversity. Thickness of Ah horizon increased and pH decreased and concentrations of Fe, Al, S increased. Base cations increased as well, despite the drop in pH. Also, water-extractable ammonium, nitrate and phosphate increased, along with the NH4:NO3 ratio. Sites with high nitrogen deposition had higher NH4:NO3 and Al:Ca ratios, lower pH, higher cover of algae, lower lichen and total species diversity, more Pinus sylvestris seedlings and more species of late succession stages. Conclusions Drift sand succession seems to be mainly driven by an increase in organic matter, but is accelerated by nitrogen deposition

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Current concepts in clinical radiation oncology

    Get PDF

    Taming global flood disasters: lessons learned from Dutch experience

    Get PDF
    There is a growing international recognition that flood risk management in optima forma should be a programmed and flexible process of continuously improving management practices by active learning about the outcome of earlier and ongoing interventions and drivers of change. In the Netherlands, such a long-term, adaptive flood risk management strategy is now being implemented. This so-called second Delta Programme aims to identify and exploit opportunities and capitalize on short-term benefits and opportunistic synergies that arise from change and will require adaptive policymaking. It also requires the financial and institutional means to operate in a long-lasting way, which at the very least, means engaging stakeholders, gathering and disseminating results and adaptation of future plans. Transferring the Dutch approach to other countries is a major challenge that calls for fundamental changes in institutional arrangements at various levels and thus requires customized programmes for strategic institutional change. Recent examples of transfer will provide important lessons of how institutional change can successfully occur and will contribute insights for other countries that attempting to reform their flood risk management strategies. Continuous monitoring and evaluation and sharing international experiences will become crucial for the effective delivery and wider uptake of these new strategies around the globe.Hydraulic EngineeringCivil Engineering and Geoscience

    Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study

    No full text
    Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation
    corecore