92 research outputs found
HER-2 status of circulating tumor cells in a metastatic breast cancer cohort: A comparative study on characterization techniques
Background
Personalized targeted treatment in metastatic breast cancer relies on accurate assessment
of molecular aberrations, e.g. overexpression of Human Epidermal growth factor Receptor
2 (HER-2). Molecular interrogation of circulating tumor cells (CTCs) can provide an attractive alternative for real-time biomarker assessment. However, implementation of CellSearch-based HER-2 analysis has been limited. Immunofluorescent (IF) image
interpretation is crucial, as different HER-2 categories have been described. Major questions in CTC research are how these IF categories reflect gene expression and amplification, and if we should consider âmediumâ HER-2 expressing CTCs for patient selection.
Methods
Tumor cells from spiked cell lines (n = 8) and CTCs (n = 116 samples) of 85 metastatic
breast cancer patients were enriched using CellSearch. Comparative analysis of HER-2
expression by IF imaging (ACCEPT, DEPArray, and visual scoring) with qRT-PCR and
HER-2/neu FISH was performed.
Results
Automated IF HER-2-profiling by DEPArray and ACCEPT delivered comparable results.
There was a 98% agreement between 17 trained observers (visual scoring) and ACCEPT
considering HER-2neg and HER-2high expressing CTCs. However, 89% of HER-2med
expressing CTCs by ACCEPT were scored negative by observers. HER-2high expressing
tumor cells demonstrated HER-2/neu gene amplification, whereas HER-2neg and HER-2med
expressing tumor cells and CTCs by ACCEPT were copy-number neutral. All patients with HER-2-positive archival tumors had ïżœ1 HER-2high expressing CTCs, while 80% of HER-2-
negative patients did not. High relative gene expression of HER-2 measured on enriched
CTC lysates correlated with having ïżœ1 HER-2high expressing CTCs.
Conclusion
Automated images analysis has enormous potential for clinical implementation. HER-2
characterization and clinical trial design should be focused on HER-2high expressing CTCs
Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis
FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1â5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2âCD44âSRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state
Mechanisms of congenital heart disease caused by NAA15 haploinsufficiency
Rationale: NAA15 is a component of the N-terminal (Nt) acetyltransferase complex, NatA. The mechanism by which NAA15 haploinsufficiency causes congenital heart disease (CHD) remains unknown. To better understand molecular processes by which NAA15 haploinsufficiency perturbs cardiac development, we introduced NAA15 variants into human induced pluripotent stem cells (iPSCs) and assessed the consequences of these mutations on RNA and protein expression.
Objective: We aim to understand the role of NAA15 haploinsufficiency in cardiac development by investigating proteomic effects on NatA complex activity, and identifying proteins dependent upon a full amount of NAA15.
Methods and Results: We introduced heterozygous LoF, compound heterozygous and missense residues (R276W) in iPS cells using CRISPR/Cas9. Haploinsufficient NAA15 iPS cells differentiate into cardiomyocytes, unlike NAA15-null iPS cells, presumably due to altered composition of NatA. Mass spectrometry (MS) analyses reveal ~80% of identified iPS cell NatA targeted proteins displayed partial or complete Nt-acetylation. Between null and haploinsufficient NAA15 cells Nt-acetylation levels of 32 and 9 NatA-specific targeted proteins were reduced, respectively. Similar acetylation loss in few proteins occurred in NAA15 R276W iPSCs. In addition, steady-state protein levels of 562 proteins were altered in both null and haploinsufficient NAA15 cells; eighteen were ribosomal-associated proteins. At least four proteins were encoded by genes known to cause autosomal dominant CHD.
Conclusions: These studies define a set of human proteins that requires a full NAA15 complement for normal synthesis and development. A 50% reduction in the amount of NAA15 alters levels of at least 562 proteins and Nt-acetylation of only 9 proteins. One or more modulated proteins are likely responsible for NAA15-haploinsufficiency mediated CHD. Additionally, genetically engineered iPS cells provide a platform for evaluating the consequences of amino acid sequence variants of unknown significance on NAA15 function
Impact of nationwide enhanced implementation of best practices in pancreatic cancer care (PACAP-1): A multicenter stepped-wedge cluster randomized controlled trial
Background: Pancreatic cancer has a very poor prognosis. Best practices for the use of chemotherapy, enzyme replacement therapy, and biliary drainage have been identified but their implementation in daily clinical practice is often suboptimal. We hypothesized that a nationwide program to enhance implementation of these best practices in pancreatic cancer care would improve survival and quality of life. Methods/design: PACAP-1 is a nationwide multicenter stepped-wedge cluster randomized controlled superiority trial. In a per-center stepwise and randomized manner, best practices in pancreatic cancer care regarding the use of (neo)adjuvant and palliative chemotherapy, pancreatic enzyme replacement therapy, and metal biliary stents are implemented in all 17 Dutch pancreatic centers and their regional referral networks during a 6-week initiation period. Per pancreatic center, one multidisciplinary team functions as reference for the other centers in the network. Key best practices were identified from the literature, 3 years of data from existing nationwide registries within the Dutch Pancreatic Cancer Project (PACAP), and national expert meetings. The best practices follow the Dutch guideline on pancreatic cancer and the current state of the literature, and can be executed within daily clinical practice. The implementation process includes monitoring, return visits, and provider feedback in combination with education and reminders. Patient outcomes and compliance are monitored within the PACAP registries. Primary outcome is 1-year overall survival (for all disease stages). Secondary outcomes include quality of life, 3- and 5-year overall survival, and guideline compliance. An improvement of 10% in 1-year overall survival is considered clinically relevant. A 25-month study duration was chosen, which provides 80% statistical power for a mortality reduction of 10.0% in the 17 pancreatic cancer centers, with a required sample size of 2142 patients, corresponding to a 6.6% mortality reduction and 4769 patients nationwide. Discussion: The PACAP-1 trial is designed to evaluate whether a nationwide program for enhanced implementation of best practices in pancreatic cancer care can improve 1-year overall survival and quality of life. Trial registration: ClinicalTrials.gov, NCT03513705. Trial opened for accrual on 22th May 2018
Comorbid mental disorders in substance users from a single catchment area - a clinical study
<p>Abstract</p> <p>Background</p> <p>The optimal treatment of patients with substance use disorders (SUDs) requires an awareness of their comorbid mental disorders and vice versa. The prevalence of comorbidity in first-time-admitted SUD patients has been insufficiently studied. Diagnosing comorbidity in substance users is complicated by symptom overlap, symptom fluctuations, and the limitations of the assessment methods. The aim of this study was to diagnose all mental disorders in substance users living in a single catchment area, without any history of treatment for addiction or psychiatric disorders, admitted consecutively to the specialist health services. The prevalence of substance-induced versus substance-independent disorders according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), in SUD patients will be described.</p> <p>Methods</p> <p>First-time consecutively admitted patients from a single catchment area, aged 16 years or older, admitted to addiction clinics or departments of psychiatry as outpatients or inpatients will be screened for substance-related problems using the Alcohol Use Disorder Identification Test and the Drug Use Disorder Identification Test. All patients with scores above the cutoff value will be asked to participate in the study. The patients included will be diagnosed for SUD and other axis I disorders by a psychiatrist using the Psychiatric Research Interview for Substance and Mental Disorders. This interview was designed for the diagnosis of primary and substance-induced disorders in substance users. Personality disorders will be assessed according to the Structured Clinical Interview for DSM-IV axis II disorders. The Symptom Checklist-90-Revised, the Inventory of Depressive Symptoms, the Montgomery Asberg Depression Rating Scale, the Young Mania Rating Scale, and the Angst Hypomania Check List will be used for additional diagnostic assessments. The sociodemographic data will be recorded with the Stanley Foundation's Network Entry Questionnaire. Biochemical assessments will reveal somatic diseases that may contribute to the patient's symptoms.</p> <p>Discussion</p> <p>This study is unique because the material represents a complete sample of first-time-admitted treatment seekers with SUD from a single catchment area. Earlier studies have not focused on first-time-admitted patients, so chronically ill patients, may have been overrepresented in those samples. This study will contribute new knowledge about mental disorders in first-time-admitted SUD patients.</p
The genetic epidemiology of joint shape and the development of osteoarthritis
Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts forâ~â50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed
Preparative-scale high-performance liquid chromatography on analytical columns
The capacity of analytical high-performance liquid chromatographs for preparative-scale separations in the adsorption as well as in the reversed phase mode is shown to be about ten times greater than generally believed. A preparative column of 50 x 0.68 cm which can be handled by an analytical instrument can separate 0.1-1 g of relatively complex mixtures. The displacement and elution chromatographic modes are compared
- âŠ