586 research outputs found
Low-dose CT measurements of airway dimensions and emphysema associated with airflow limitation in heavy smokers:a cross sectional study
Background: Increased airway wall thickness (AWT) and parenchymal lung destruction both contribute to airflow limitation. Advances in computed tomography (CT) post-processing imaging allow to quantify these features. The aim of this Dutch population study is to assess the relationships between AWT, lung function, emphysema and respiratory symptoms.Methods: AWT and emphysema were assessed by low-dose CT in 500 male heavy smokers, randomly selected from a lung cancer screening population. AWT was measured in each lung lobe in cross-sectionally reformatted images with an automated imaging program at locations with an internal diameter of 3.5 mm, and validated in smaller cohorts of patients. The 15th percentile method (Perc15) was used to assess the severity of emphysema. Information about respiratory symptoms and smoking behavior was collected by questionnaires and lung function by spirometry.Results: Median AWT in airways with an internal diameter of 3.5 mm (AWT(3.5)) was 0.57 (0.44 - 0.74) mm. Median AWT in subjects without symptoms was 0.52 (0.41-0.66) and in those with dyspnea and/or wheezing 0.65 (0.52-0.81) mm (pConclusions: Post processing standardization of airway wall measurements provides a reliable and useful method to assess airway wall thickness. Increased airway wall thickness contributes more to airflow limitation than emphysema in a smoking male population even after adjustment for smoking behavior.</p
Muon Colliders
Muon Colliders have unique technical and physics advantages and disadvantages
when compared with both hadron and electron machines. They should thus be
regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high
luminosity \mumu colliders, and of a 0.5 TeV lower luminosity demonstration
machine. We discuss the various systems in such muon colliders, starting from
the proton accelerator needed to generate the muons and proceeding through muon
cooling, acceleration and storage in a collider ring. Problems of detector
background are also discussed.Comment: 28 pages, with 12 postscript figures. To be published Proceedings of
the 9th Advanced ICFA Beam Dynamics Workshop, AIP Pres
Optimization Strategies for Interactive Classification of Interstitial Lung Disease Textures
For computerized analysis of textures in interstitial lung disease, manual annotations of lung tissue are necessary. Since making these annotations is labor intensive, we previously proposed an interactive annotation framework. In this framework, observers iteratively trained a classifier to distinguish the different texture types by correcting its classification errors. In this work, we investigated three ways to extend this approach, in order to decrease the amount of user interaction required to annotate all lung tissue in a computed tomography scan. First, we conducted automatic classification experiments to test how data from previously annotated scans can be used for classification of the scan under consideration. We compared the performance of a classifier trained on data from one observer, a classifier trained on data from multiple observers, a classifier trained on consensus training data, and an ensemble of classifiers, each trained on data from different sources. Experiments were conducted without and with texture selection (ts). In the former case, training data from all eight textures was used. In the latter, only training data from the texture types present in the scan were used, and the observer would have to indicate textures contained in the scan to be analyzed. Second, we simulated interactive annotation to test the effects of (1) asking observers to perform ts before the start of annotation, (2) the use of a classifier trained on data from previously annotated scans at the start of annotation, when the interactive classifier is untrained, and (3) allowing observers to choose which interactive or automatic classification results they wanted to correct. Finally, various strategies for selecting the classification results that were presented to the observer were considered. Classification accuracies for all possible interactive annotation scenarios were compared. Using the best-performing protocol, in which observers select the textures that should be distinguished in the scan and in which they can choose which classification results to use for correction, a median accuracy of 88% was reached. The results obtained using this protocol were significantly better than results obtained with other interactive or automatic classification protocols
Temporal progression in migratory status and sexual maturation in European silver eels during downstream migration
The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17β-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance
Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction
The European eel migrates 5,000–6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10–12 mg fat/km which is 4–6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61–0.67 m s−1, which is ~60% higher than the generally assumed cruise speed of 0.4 m s−1 and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols
Systematic study related to the role of initial impurities and irradiation rates in the formation and evolution of complex defects in silicon for detectors in HEP experiments
The influence of oxygen and carbon impurities on the concentrations of
defects in silicon for detector uses, in complex fields of radiation,
characteristic to high energy physics experiments, is investigated in the frame
of the quantitative phenomenological model developed previously by the authors
and extended in the present paper. Continuous irradiation conditions are
considered, simulating realistically the environments for these experiments.
The generation rate of primary defects is calculated starting from the
projectile - silicon interaction and from the recoil energy redistribution in
the lattice. The mechanisms of formation of complex defects are explicitly
analysed. Vacancy-interstitial annihilation, interstitial and vacancy migration
to sinks, divacancy, vacancy- and interstitial-impurity complex formation and
decomposition are considered. Oxygen and carbon impurities present in silicon
could monitor the concentration of all stable defects, due to their interaction
with vacancies and interstitials. Their role in the mechanisms of formation and
decomposition of the following stable defects: V_2, VO, V_2O, C_i, C_iO_i,
C_iC_s and VP, is studied. The model predictions cover a generation primary
rate of defects between 10^2 pairs/cm3/s and 10^{11} pairs/cm3/s, and could be
a useful clue in obtaining harder materials for detectors for space missions,
at the new generation of accelerators, as, e.g. LHC, Super-LHC and Eloisatron,
or for industrial applications.Comment: 15 pages, work in the frame of CERN RD50 Collaboration, submitted to
Physica Script
Modified Chrispin-Norman chest radiography score for cystic fibrosis: observer agreement and correlation with lung function
Contains fulltext :
96114.pdf ( ) (Closed access)OBJECTIVE: To test observer agreement and two strategies for possible improvement (consensus meeting and reference images) for the modified Chrispin-Norman score for children with cystic fibrosis (CF). METHODS: Before and after a consensus meeting and after developing reference images three observers scored sets of 25 chest radiographs from children with CF. Observer agreement was tested for line, ring, mottled and large soft shadows, for overinflation and for the composite modified Chrispin-Norman score. Correlation with lung function was assessed. RESULTS: Before the consensus meeting agreement between observers 1 and 2 was moderate-good, but with observer 3 agreement was poor-fair. Scores correlated significantly with spirometry for observers 1 and 2 (-0.72<R<-0.42, P < 0.05), but not for observer 3. Agreement with observer 3 improved after the consensus meeting. Reference images improved agreement for overinflation and mottled and large shadows and correlation with lung function, but agreement for the modified Chrispin-Norman score did not improve further. CONCLUSION: Consensus meetings and reference images improve among-observer agreement for the modified Chrispin-Norman score, but good agreement was not achieved among all observers for the modified Chrispin-Norman score and for bronchial line and ring shadows
Impact of a multi-disease integrated screening and diagnostic model for COVID-19, TB, and HIV in Lesotho
The surge of the COVID-19 pandemic challenged health services globally, and in Lesotho, the HIV and tuberculosis (TB) services were similarly affected. Integrated, multi-disease diagnostic services were proposed solutions to mitigate these disruptions. We describe and evaluate the effect of an integrated, hospital-based COVID-19, TB and HIV screening and diagnostic model in two rural districts in Lesotho, during the period between December 2020 and August 2022. Adults, hospital staff, and children above 5 years attending two hospitals were pre-screened for COVID-19 and TB symptoms. After a positive pre-screening, participants were offered to enroll in a service model that included clinical evaluation, chest radiography, SARS-CoV-2, TB, and HIV testing. Participants diagnosed with COVID-19, TB, or HIV were contacted after 28 days to evaluate their health status and linkage to HIV and/or TB care services. Of the 179160 participants pre-screened, 6623(3.7%) pre-screened positive, and 4371(66%) were enrolled in this service model. Of the total 458 diagnoses, only 17 happened in children. One positive rapid antigen test for SARS-CoV-2 was found per 11 participants enrolled, one Xpert-positive TB case was diagnosed per 85 people enrolled, and 1 new HIV diagnosis was done per 182 people enrolled. Of the 321(82.9%) participants contacted after 28 days of diagnosis, 304(94.7%) reported to be healthy. Of the individuals that were newly diagnosed with HIV or TB, 18/24(75.0%) and 46/51(90.1%) started treatment within 28 days of the diagnosis. This screening and diagnostic model successfully maintained same-day, integrated COVID-19, TB, and HIV testing services, despite frequent disruptions caused by the surge of COVID-19 waves, healthcare seeking patterns, and the volatile context (social measures, travel restrictions, population lockdowns). There were positive effects in avoiding diagnostic delays and ensuring linkage to services, however, diagnostic yields for adults and children were low. To inform future preparedness plans, research will need to identify essential health interventions and how to optimize them along each phase of the emergency response
Transient thermal effects in solid noble gases as materials for the detection of Dark Matter
The transient phenomena produced in solid noble gases by the stopping of the
recoils resulting from the elastic scattering processes of WIMPs from the
galactic halo were modelled, as dependencies of the temperatures of lattice and
electronic subsystems on the distance to the recoil's trajectory, and time from
its passage. The peculiarities of these thermal transients produced in Ar, Kr
and Xe were analysed for different initial temperatures and WIMP energies, and
were correlated with the characteristics of the targets and with the energy
loss of the recoils. The results were compared with the thermal spikes produced
by the same WIMPs in Si and Ge. In the range of the energy of interest, up to
tens of keV for the self-recoil, local phase transitions solid - liquid and
even liquid - gas were found possible, and the threshold parameters were
established.Comment: Minor corrections and updated references; accepted to JCA
- …