613 research outputs found
Deep Transfer Learning for Automated Single-Lead EEG Sleep Staging with Channel and Population Mismatches
Automated sleep staging using deep learning models typically requires training on hundreds of sleep recordings, and pre-training on public databases is therefore common practice.However, suboptimal sleep stage performance may occur from mismatches between source and target datasets, such as differences in population characteristics (e.g., an unrepresented sleep disorder) or sensors (e.g., alternative channel locations for wearable EEG). We investigated three strategies for training an automated single-channel EEG sleep stager: pre-training (i.e., training on the original source dataset), training-from-scratch (i.e., training on the new target dataset), and fine-tuning (i.e., training on the original source dataset, fine-tuning on the new target dataset). As source dataset, we used the F3-M2 channel of healthy subjects (N=94). Performance of the different training strategies was evaluated using Cohen's Kappa (κ) in eight smaller target datasets consisting of healthy subjects (N=60), patients with obstructive sleep apnea (OSA, N=60), insomnia (N=60), and REM sleep behavioral disorder (RBD, N=22), combined with two EEG channels, F3-M2 and F3-F4. No differences in performance between the training strategies was observed in the agematched F3-M2 datasets, with an average performance across strategies of κ = .83 in healthy, κ = .77 in insomnia, and κ = .74 in OSA subjects. However, in the RBD set, where data availability was limited, fine-tuning was the preferred method (κ = .67), with an average increase in κ of .15 to pre-training and training-from-scratch. In the presence of channel mismatches, targeted training is required, either through training-from-scratch or fine-tuning, increasing performance with κ = .17 on average. We found that, when channel and/or population mismatches cause suboptimal sleep staging performance, a fine-tuning approach can yield similar to superior performance compared to building a model from scratch, while requiring a smaller sample size. In contrast to insomnia and OSA, RBD data contains characteristics, either inherent to the pathology or age-related, which apparently demand targeted training
FlexEvent:going beyond Case-Centric Exploration and Analysis of Multivariate Event Sequences
In many domains, multivariate event sequence data is collected focused around an entity (the case). Typically, each event has multiple attributes, for example, in healthcare a patient has events such as hospitalization, medication, and surgery. In addition to the multivariate events, also the case (a specific attribute, e.g., patient) has associated multivariate data (e.g., age, gender, weight). Current work typically only visualizes one attribute per event (label) in the event sequences. As a consequence, events can only be explored from a predefined case-centric perspective. However, to find complex relations from multiple perspectives (e.g., from different case definitions, such as doctor), users also need an event- and attribute-centric perspective. In addition, support is needed to effortlessly switch between and within perspectives. To support such a rich exploration, we present FlexEvent: an exploration and analysis method that enables investigation beyond a fixed case-centric perspective. Based on an adaptation of existing visualization techniques, such as scatterplots and juxtaposed small multiples, we enable flexible switching between different perspectives to explore the multivariate event sequence data needed to answer multi-perspective hypotheses. We evaluated FlexEvent with three domain experts in two use cases with sleep disorder and neonatal ICU data that show our method facilitates experts in exploring and analyzing real-world multivariate sequence data from different perspectives
Deep Transfer Learning for Automated Single-Lead EEG Sleep Staging with Channel and Population Mismatches
Automated sleep staging using deep learning models typically requires training on hundreds of sleep recordings, and pre-training on public databases is therefore common practice.However, suboptimal sleep stage performance may occur from mismatches between source and target datasets, such as differences in population characteristics (e.g., an unrepresented sleep disorder) or sensors (e.g., alternative channel locations for wearable EEG). We investigated three strategies for training an automated single-channel EEG sleep stager: pre-training (i.e., training on the original source dataset), training-from-scratch (i.e., training on the new target dataset), and fine-tuning (i.e., training on the original source dataset, fine-tuning on the new target dataset). As source dataset, we used the F3-M2 channel of healthy subjects (N=94). Performance of the different training strategies was evaluated using Cohen's Kappa (κ) in eight smaller target datasets consisting of healthy subjects (N=60), patients with obstructive sleep apnea (OSA, N=60), insomnia (N=60), and REM sleep behavioral disorder (RBD, N=22), combined with two EEG channels, F3-M2 and F3-F4. No differences in performance between the training strategies was observed in the agematched F3-M2 datasets, with an average performance across strategies of κ = .83 in healthy, κ = .77 in insomnia, and κ = .74 in OSA subjects. However, in the RBD set, where data availability was limited, fine-tuning was the preferred method (κ = .67), with an average increase in κ of .15 to pre-training and training-from-scratch. In the presence of channel mismatches, targeted training is required, either through training-from-scratch or fine-tuning, increasing performance with κ = .17 on average. We found that, when channel and/or population mismatches cause suboptimal sleep staging performance, a fine-tuning approach can yield similar to superior performance compared to building a model from scratch, while requiring a smaller sample size. In contrast to insomnia and OSA, RBD data contains characteristics, either inherent to the pathology or age-related, which apparently demand targeted training
Temporal dynamics of awakenings from slow-wave sleep in non-rapid eye movement parasomnia
Non-rapid eye movement parasomnia disorders, also called disorders of arousal, are characterized by abnormal nocturnal behaviours, such as confusional arousals or sleep walking. Their pathophysiology is not yet fully understood, and objective diagnostic criteria are lacking. It is known, however, that behavioural episodes occur mostly in the beginning of the night, after an increase in slow-wave activity during slow-wave sleep. A better understanding of the prospect of such episodes may lead to new insights in the underlying mechanisms and eventually facilitate objective diagnosis. We investigated temporal dynamics of transitions from slow-wave sleep of 52 patients and 79 controls. Within the patient group, behavioural and non-behavioural N3 awakenings were distinguished. Patients showed a higher probability to wake up after an N3 bout ended than controls, and this probability increased with N3 bout duration. Bouts longer than 15 min resulted in an awakening in 73% and 34% of the time in patients and controls, respectively. Behavioural episodes reduced over sleep cycles due to a reduction in N3 sleep and a reducing ratio between behavioural and non-behavioural awakenings. In the first two cycles, N3 bouts prior to non-behavioural awakenings were significantly shorter than N3 bouts advancing behavioural awakenings in patients, and N3 awakenings in controls. Our findings provide insights in the timing and prospect of both behavioural and non-behavioural awakenings from N3, which may result in prediction and potentially prevention of behavioural episodes. This work, moreover, leads to a more complete characterization of a prototypical hypnogram of parasomnias, which could facilitate diagnosis
A grounded theory study on the influence of sleep on Parkinson’s symptoms
Contains fulltext :
167717.pdf (publisher's version ) (Open Access)BACKGROUND: Upon awaking, many Parkinson's patients experience an improved mobility, a phenomenon known as 'sleep benefit'. Despite the potential clinical relevance, no objective correlates of sleep benefit exist. The discrepancy between the patients' subjective experience of improvement in absence of objective changes is striking, and raises questions about the nature of sleep benefit. We aimed to clarify what patients reporting subjective sleep benefit, actually experience when waking up. Furthermore, we searched for factors associated with subjective sleep benefit. METHODS: Using a standardized topic list, we interviewed 14 Parkinson patients with unambiguous subjective sleep benefit, selected from a larger questionnaire-based cohort. A grounded theory approach was used to analyse the data. RESULTS: A subset of the participants described a temporary decrease in their Parkinson motor symptoms after sleep. Others did experience beneficial effects which were, however, non-specific for Parkinson's disease (e.g. feeling 'rested'). The last group misinterpreted the selection questionnaire and did not meet the definition of sleep benefit for various reasons. There were no general sleep-related factors that influenced the presence of sleep benefit. Factors mentioned to influence functioning at awakening were mostly stress related. CONCLUSIONS: The group of participants convincingly reporting sleep benefit in the selection questionnaire appeared to be very heterogeneous, with only a portion of them describing sleep benefit on motor symptoms. The group of participants actually experiencing motor sleep benefit may be much smaller than reported in the literature so far. Future studies should employ careful inclusion criteria, which could be based on our reported data
Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring
Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods.
Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm
Model-Based Evaluation of Methods for Respiratory Sinus Arrhythmia Estimation
OBJECTIVE: Respiratory sinus arrhythmia (RSA) refers to heart rate oscillations synchronous with respiration, and it is one of the major representations of cardiorespiratory coupling. Its strength has been suggested as a biomarker to monitor different conditions and diseases. Some approaches have been proposed to quantify the RSA, but it is unclear which one performs best in specific scenarios. The main objective of this study is to compare seven state-of-the-art methods for RSA quantification using data generated with a model proposed to simulate and control the RSA. These methods are also compared and evaluated on a real-life application, for their ability to capture changes in cardiorespiratory coupling during sleep. METHODS: A simulation model is used to create a dataset of heart rate variability and respiratory signals with controlled RSA, which is used to compare the RSA estimation approaches. To compare the methods objectively in a real-life application, regression models trained on the simulated data are used to map the estimates to the same measurement scale. RESULTS AND CONCLUSION: RSA estimates based on cross entropy, time-frequency coherence and subspace projections showed the best performance on simulated data. In addition, these estimates captured the expected trends in the changes in cardiorespiratory coupling during sleep similarly. SIGNIFICANCE: An objective comparison of methods for RSA quantification is presented to guide future analyses. Also, the proposed simulation model can be used to compare existing and newly proposed RSA estimates. It is freely accessible online
The impact of healthy pregnancy on features of heart rate variability and pulse wave morphology derived from wrist-worn photoplethysmography
Due to the association between dysfunctional maternal autonomic regulation and pregnancy complications, tracking non-invasive features of autonomic regulation derived from wrist-worn photoplethysmography (PPG) measurements may allow for the early detection of deteriorations in maternal health. However, even though a plethora of these features-specifically, features describing heart rate variability (HRV) and the morphology of the PPG waveform (morphological features)-exist in the literature, it is unclear which of these may be valuable for tracking maternal health. As an initial step towards clarity, we compute comprehensive sets of HRV and morphological features from nighttime PPG measurements. From these, using logistic regression and stepwise forward feature elimination, we identify the features that best differentiate healthy pregnant women from non-pregnant women, since these likely capture physiological adaptations necessary for sustaining healthy pregnancy. Overall, morphological features were more valuable for discriminating between pregnant and non-pregnant women than HRV features (area under the receiver operating characteristics curve of 0.825 and 0.74, respectively), with the systolic pulse wave deterioration being the most valuable single feature, followed by mean heart rate (HR). Additionally, we stratified the analysis by sleep stages and found that using features calculated only from periods of deep sleep enhanced the differences between the two groups. In conclusion, we postulate that in addition to HRV features, morphological features may also be useful in tracking maternal health and suggest specific features to be included in future research concerning maternal health.</p
- …