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Deep transfer learning for
automated single-lead EEG sleep
staging with channel and
population mismatches
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Fokke B. Van Meulen1,3, Sebastiaan Overeem1,3,
Merel M. Van Gilst1,3 and Elisabetta Peri1

1Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands,
2Philips Research, Eindhoven, Netherlands, 3Kempenhaeghe Center for Sleep Medicine, Heeze,
Netherlands

Introduction: Automated sleep staging using deep learning models typically
requires training on hundreds of sleep recordings, and pre-training on public
databases is therefore common practice. However, suboptimal sleep stage
performance may occur from mismatches between source and target datasets,
such as differences in population characteristics (e.g., an unrepresented sleep
disorder) or sensors (e.g., alternative channel locations for wearable EEG).

Methods: We investigated three strategies for training an automated single-channel
EEG sleep stager: pre-training (i.e., training on the original source dataset), training-
from-scratch (i.e., training on the new target dataset), and fine-tuning (i.e., training on
the original source dataset, fine-tuning on the new target dataset). As source dataset,
we used the F3-M2 channel of healthy subjects (N = 94). Performance of the different
training strategies was evaluated using Cohen’s Kappa (κ) in eight smaller target
datasets consisting of healthy subjects (N = 60), patients with obstructive sleep apnea
(OSA, N = 60), insomnia (N = 60), and REM sleep behavioral disorder (RBD, N = 22),
combined with two EEG channels, F3-M2 and F3-F4.

Results: No differences in performance between the training strategies was
observed in the age-matched F3-M2 datasets, with an average performance
across strategies of κ = .83 in healthy, κ = .77 in insomnia, and κ = .74 in OSA
subjects. However, in the RBD set, where data availability was limited, fine-tuning
was the preferred method (κ = .67), with an average increase in κ of .15 to pre-
training and training-from-scratch. In the presence of channel mismatches,
targeted training is required, either through training-from-scratch or fine-
tuning, increasing performance with κ = .17 on average.

Discussion: We found that, when channel and/or population mismatches cause
suboptimal sleep staging performance, a fine-tuning approach can yield similar to
superior performance compared to building amodel from scratch, while requiring
a smaller sample size. In contrast to insomnia and OSA, RBD data contains
characteristics, either inherent to the pathology or age-related, which
apparently demand targeted training.
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polysomnography, sleep staging, single-channel, wearable EEG, fine-tuning, deep
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1 Introduction

Sleep stage scoring is an essential component of both sleep
research and the clinical diagnosis of sleep disorders.
Conventionally, polysomnographic (PSG) recordings are
manually scored by trained clinicians according to the American
Academy of Sleep Medicine (AASM) guidelines (Troester et al.,
2023). 30-s epochs are classified as either Wake, N1, N2, N3, or
rapid-eye-movement (REM) sleep through visual inspection of
multiple leads, including electroencephalography (EEG),
electromyography (EMG), and electrooculography (EOG). This
manual process is labor-intensive, time-consuming, and suffers
from a relatively large degree of inter-rater disagreement
(Danker-Hopfe et al., 2004; Danker-Hopfe et al., 2009; Rosenberg
and van Hout, 2013).

Therefore, in recent years, there has been a push towards
automated sleep stage classification, enabled by advances in
machine learning (Tsinalis et al., 2016; Supratak et al., 2017;
Korkalainen et al., 2019; Mousavi et al., 2019; Phan et al., 2019;
Seo et al., 2020; Guillot and Thorey, 2021). This development is
further driven by the rise of new sleep monitoring technologies
including wearable EEG. Wearable EEG facilitates the collection of
more, longitudinal data that can be scored in a cost-efficient manner
using automated sleep staging (Singh et al., 2015). Since wearable
EEG usually uses less channels and potentially other electrode
locations than the AASM standard, manual scoring is not always
possible, while automated sleep stagers can be specifically trained on
these channels (Finan et al., 2016; Garcia-Molina et al., 2018; Arnal
et al., 2020). In particular, the use of deep neural network learning
methods for automated sleep staging has yielded promising results,
showing high agreement with manual scoring, similar or even
superior to the inter-rater agreement between manual scorers
(see, e.g., Fiorillo et al., 2019; Phan and Mikkelsen, 2022 for
extensive reviews).

To reach expert-level performance using deep learning,
hundreds of sleep recordings are typically required for model
training (Biswal et al., 2018; Guillot and Thorey, 2021; Perslev
et al., 2021). Databases such as the Montreal Archive of Sleep
Studies (MASS; O’Reilly et al., 2014), the National Sleep Research
Resource (NSRR; Zhang et al., 2018), and PhysioNet (Goldberger
et al., 2000), together comprise thousands of sleep recordings and
enable large scale training. However, training on publicly available
data and subsequently employing the model on novel data of interest
can be problematic when mismatches exist between source and
target datasets, for example, with respect to population
characteristics, or sensors.

Population mismatches can be present because population
cohorts of public datasets generally contain either examples of
healthy subjects, or mainly patients with common sleep disorders
as obstructive sleep apnea (OSA) and insomnia. Patients with these
sleep disorders can differ from healthy sleepers in sleep
characteristics such as increased sleep fragmentation, and longer
wake before sleep and after sleep onset (Mannarino et al., 2012;
Baglioni et al., 2014). Many sleep disorders are much less prevalent,
making data availability for training less abundant. Importantly,
these sleep disorders can exhibit specific pathophysiological
characteristics which are not learned by the model. The effects of
such a population mismatch may, for example, appear in patients

with REM sleep behavioral disorder (RBD). RBD patients are
generally older, and the disorder is characterized by the absence
of muscle atonia during REM sleep, causing dream-enacting
behavior (Boeve et al., 2007; Sateia, 2014). Potentially, these
characteristics contribute to the underperformance of automated
sleep staging in RBD to healthy subjects and other sleep disorders,
especially in REM sleep classification (Andreotti et al., 2018; Cooray
et al., 2019).

Channel mismatches between the publicly available dataset and
the novel dataset are the result when the electrode location of
interest is not included in the publicly available data. For
example, increasing interest in (prolonged) in-home sleep
monitoring has led to the development of less obtrusive sleep
monitoring technologies, including wearable EEG using dry
frontopolar electrodes (Finan et al., 2016; Garcia-Molina et al.,
2018; Arnal et al., 2020). The frontopolar location is not included
in the majority of public available datasets, since it is not covered by
AASM standards (Troester et al., 2023). Furthermore, compared to
the standard wet electrodes in a PSG montage, dry electrodes in
wearable systems result in lower signal quality and slightly different
EEG signal information (Lopez-Gordo et al., 2014).

There are three different training strategies to employ an
automated sleep stager on novel data, the new target dataset. In
“pre-training”, the model is only trained on the original source
dataset, often public data (Guillot and Thorey, 2021). Hence, sleep
staging performance in the target dataset is susceptible to the
presence of data mismatches (Phan et al., 2019; Phan et al.,
2019). On the other hand, “training-from-scratch” can be used to
train a new model only on the target dataset (Biswal et al., 2018;
Perslev et al., 2021). However, data availability in the target dataset
can be too limited for sufficient training of a deep learning model.
For instance, the prevalence of specific sleep disorders such as RBD
is low, and the validation of new EEG monitoring technologies is
often limited to a minimal number of healthy subjects (Finan et al.,
2016; Mikkelsen et al., 2017; Bresch et al., 2018; Sterr et al., 2018;
Arnal et al., 2020). Recently, “fine-tuning” has been proposed as a
solution to overcome data mismatches and limited data availability.
In this form of transfer learning, the model is first pre-trained on the
source dataset and further fine-tuned on the (smaller) target dataset
to learn its specific characteristics (Pan and Yang, 2010). Although
transfer learning for automated sleep staging shows promising
results, performance improvement is limited (Andreotti et al.,
2018; He et al., 2023). Also, it remains unknown how fine-tuning
can best be implemented, since ideal settings seem specific to the
deep learning architecture (Phan et al., 2019).

While each of the strategies (pre-training, training-from-
scratch, and fine-tuning) has been used for training automated
sleep stagers, no studies have been performed to systematically
assess which method is favorable. The aim of this study was to
evaluate which training strategy is preferred in the presence of data
mismatches and limited data availability. For each strategy, we
analyzed the performance on the combination of three age-
matched populations (healthy subjects vs. OSA vs. insomnia) and
one population with limited data availability (RBD), with two sets of
EEG channels (F3-M2 vs. F3-F4). By comparing all strategies,
populations, and channels in a systematic way, we could study
the isolated effects of all these parameters. The TinySleepNet
(Supratak and Guo, 2020), a previously published deep learning
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model for single-channel EEG, was used as automated sleep stage
model. Both EEG channels and the automated model were chosen
for their potential implementation in wearable EEG systems.

2 Materials and methods

2.1 Data

2.1.1 Databases
The sleep-disordered participants were sampled from the PSG

recordings of the Sleep and Obstructive Sleep ApneaMeasuring with
Non-Invasive Applications (SOMNIA) cohort recorded before
January 2021 (van Gilst et al., 2019). All data was acquired at the
Kempenhaeghe Center for Sleep Medicine (Heeze, the Netherlands)
among individuals scheduled for an overnight PSG as part of the
standard clinical routine. Trained clinicians manually scored the
PSG recordings in accordance with AASM standards (Berry et al.,

2017). The primary sleep diagnosis was coded according to the
criteria specified in the International Classification of Sleep
Disorders version 3 (ICSD-3).

The sleep recordings of healthy participants were obtained from
the Healthbed database, which includes healthy adults without any
known medical, psychiatric, or sleep disorders, recruited for an
overnight PSG at Kempenhaeghe Center for Sleep Medicine (Heeze,
the Netherlands) using the same setup as in the SOMNIA protocol
(van Meulen et al., 2023).

The SOMNIA and Healthbed studies adhere to the guidelines
of the Declaration of Helsinki, Good Clinical Practice, and current
legal requirements. Both data collection studies were reviewed by
the Maxima Medical Center medical ethical committee
(Veldhoven, the Netherlands, reported under N16.074 and
W17.128). The data analysis protocol was approved by the
medical ethical committee of Kempenhaeghe Center for Sleep
Medicine and the Philips Research Internal Committee for
Biomedical Experiments.

FIGURE 1
Workflow for defining the datasets. Datasets were selected from the Healthbed (van Meulen et al., 2023) and SOMNIA (van Gilst et al., 2019)
databases. Population selection, an age-matching procedure, and channel selection resulted in one source dataset and eight target datasets. In target
datasets, data availability can be limited, and/or can differ in characteristics to the source dataset due to population and channel mismatches. Grey box
indicates the age-matching procedure for the healthy, OSA and insomnia target datasets.
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2.1.2 Source and target datasets
A visual representation of how source and target datasets were

defined, can be found in Figure 1.
We restricted our selection of source and target datasets to sleep

recordings obtained from a single sleep center, thereby mitigating
potential mismatches associated with inter-center variations, such as
differences in sleep score training and in the PSG setup. For the
source dataset, 94 sleep recordings of the F3-M2 EEG channel of the
Healthbed database were used. These were all sleep recordings that
were available from the Healthbed database.

For the target dataset the following selection procedure was
used. We first included all 94 available Healthbed recordings. From
the SOMNIA database we first included all patients with idiopathic,
psychophysiological and/or chronic insomnia disorder, patients
with mild-to-moderate OSA (apnea-hypopnea index (AHI)
between 5 and 30, and patients with RBD. Patients with other
diagnosed sleep disorder comorbidities were excluded. Since ageing
is associated with an increasing variability, which can lower the
generalization and thus can lower sleep staging performance
(Guillot and Thorey, 2021), an age-matching algorithm was used
to find the optimal grouping for the subjects of the healthy, OSA,
and insomnia populations. Optimal grouping was defined as
maximal subject inclusion and minimal age variance between the
datasets, while keeping the age difference ≤5 years for each match.
Age-matching resulted in 60 age-matched healthy, OSA, and
insomnia subjects. In contrast, for the RBD target datasets no
age-matching was performed. All 22 available subjects with RBD
and without any other known sleep comorbidities, were included.
The RBD datasets were defined as having limited data availability
since, generally, a dataset size of 22 subjects is too small for sufficient
training of a deep learning model including cross-validation.

Of each population, two target datasets were created comprising
the F3-M2 and the F3-F4 EEG channel, resulting in a total of eight
target datasets: healthy F3-M2, healthy F3-F4, OSA F3-M2, OSA F3-
F4, insomnia F3-M2, insomnia F3-F4, RBD F3-M2, and RBD F3-F4.

2.1.3 Data preprocessing
A 5th order Butterworth bandpass filter between .2 and 49 Hz,

and a 50 Hz notch filter were applied to the raw data to select the
frequency range of interest and remove power line interference for
all recordings. Afterwards, data was down sampled from 512 to
100 Hz.

2.2 Deep learning model

We used the TinySleepNet deep learning model (Supratak and
Guo, 2020) for 5-stage (Wake/N1/N2/N3/REM) automated sleep
staging. TinySleepNet is a computationally efficient version of the
DeepSleepNet (Supratak et al., 2017). The model has shown similar
or superior performance to inter-rater agreement in manual scoring
and to similar automated models (Supratak et al., 2017; Korkalainen
et al., 2019; Mousavi et al., 2019). Notably, using the training-from-
scratch strategy, model performance has been evaluated on seven
public datasets and two electrode derivations (F4-EOG/C4-EOG
and Fpz-Cz). The model has shown good generalizability with
performances ranging between κ = .77 and κ = .82 (Supratak and
Guo, 2020). The model contains 1.3 M parameters and can process

(raw) single-channel EEG data. The representational learning
component has four consecutive convolutional neural network
(CNN) layers interleaved with two max-pooling and drop-out
layers. The sequential learning component consists of a single,
unidirectional long short-term memory layer (LSTM) and a
drop-out layer. For further details we refer to the original work
(Supratak and Guo, 2020).

2.3 Training strategies

We tested three different training strategies; pre-training,
training-from-scratch and fine-tuning, which are described in
detail below. For each training strategy, a 10-fold cross-validation
was employed, allowing to evaluate the performance of the model on
all subjects in the different datasets. In each iteration, 80% was used
as training, 10% as validation, and 10% as test set, except for fine-
tuning, where the number of subjects used for training was lowered
(further specified in the corresponding section). Hence, the same
subject was never included in more than one set at the same time.

The best model of each cross-validation iteration was selected
based on the highest accuracy and weighted average of the F1-score
in the validation set. Each model was trained for a maximum of
200 iterations with early stopping if no performance improvement
in the validation set was observed in the next 50 training iterations.

2.3.1 Pre-training
For pre-training, the TinySleepNet model was trained on all

94 F3-M2 EEG recordings of the healthy subjects (the source
dataset). The model performance was then tested on each of the
target datasets.

2.3.2 Training-from-scratch
For training-from-scratch, the TinySleepNet was trained on

subjects from the target dataset, while performance was also
tested on subjects from the target dataset. As for each strategy,
the set split was performed within the target dataset at subject level,
hence a given subject was part of either the training set, the
validation set, or the hold-out test set. The above described 10-
fold cross validation procedure was used to ensure each subject was
represented once in the test set. This procedure was repeated for
each of the eight target datasets.

2.3.3 Fine-tuning
For fine-tuning, the learning rate was lowered from 1e−4 to 1e−5

and only initial weights were loaded, without making any CNN
layers non-trainable. These settings were derived from optimization
experiments on separate Healthbed and SOMNIA data (i.e., not
further used in the study).

Once fine-tuning parameters were optimized, the TinySleepNet
model was first pre-trained on the source dataset. Afterwards a fine-
tuning step was applied with a subset of the data from the target
dataset. This procedure was repeated for each of the eight target
datasets. The fine-tuning method was only tested in the sleep-
disordered datasets (OSA, insomnia, RBD) and not on the
healthy datasets, since fine-tuning a model on data on which the
model was also pre-trained would be methodologically
inappropriate.
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For the OSA and insomnia datasets, additional training data of
size n = 24 was used for fine-tuning, corresponding with 40% of the
total target dataset, instead of the 80% using in pre-training and
training-from-scratch. Since data availability was limited in RBD,
additional training data of size n = 18 was used for fine-tuning, the
maximum amount available.

To study how much additional training data from the target
dataset is required for sufficient fine-tuning, we afterwards
investigated three different conditions, referred to as fine-tuning
l3, fine-tuning l2, and fine-tuning l3. Fine-tuning l3 corresponds with
the dataset sizes described above, while additional training data was
lowered to n = 12 in fine-tuning l2, and to n = 6 in fine-tuning l1. The
absolute values and percentages used in fine-tuning are further
specified in Table 1.

2.4 Statistics

All performances were analyzed using Cohen’s Kappa
coefficient of agreement (κ; Cohen, 1960) to compare the results
of automatic scoring versus manual scoring on an epoch-per-epoch
basis, for all stages (Wake, N1, N2, N3 and REM). In line with the
general interpretation of the coefficient of agreement, κ ≥ .6 was
defined as threshold of substantial performance (Landis and Koch,
1977). For each target dataset in each training strategy, sleep stage
specific accuracy was given via confusion matrices in the
Supplementary Material.

Performance differences between the training strategies (pre-
training, training-from-scratch, and fine-tuning) were evaluated
using a within-subject design. Considering the large sample size
for the age-matched datasets, and no violation of normality and
equality of variance in the RBD datasets, parametric tests were
performed. Specifically, we used repeated measures ANOVAs,
followed by post hoc paired samples t-tests if significant, including
a Bonferroni correction of α/3 for multiple testing. Performance
differences between the three different amounts of data in fine-
tuning (l1, l2, and l3) were analyzed with the same procedure.

To analyze population and channel differences, performances
across applied methods were first aggregated by either population or
channel. Performance was compared using a between-subject design
and parametric tests, due to sufficient sample sizes. Specifically, for
population, differences between the age-matched healthy, OSA and
insomnia datasets were tested with a one-way ANOVAs, followed by
post hoc independent t-tests if significant. A Bonferroni correction of

α/3 was applied to the significance threshold. For the channels,
differences between the F3-M2 and F3-F4 databases were studied
using an independent t-test.

3 Results

An overview of the demographic information and the PSG-
derived sleep statistics of the datasets can be found in Table 2.

3.1 Training strategies

Figure 2 illustrates a boxplot of the performances on each target
dataset using the three training strategies: pre-training, training-
from-scratch, and fine-tuning. A detailed overview of the statistical
differences between each training strategy can be found in Table 3.

In the healthy F3-M2 dataset, both training strategies achieved
performance higher than κ = .6, the threshold of substantial
agreement according to the general interpretation of the statistic
(Landis and Koch, 1977). Pre-training performance (κ = .84 ± .06)
was slightly but significantly higher than training-from-scratch (κ =
.82 ± .08). In contrast, for the healthy F3-F4 dataset, pre-training
(κ = .53 ± .16) achieved an average performance lower than
substantial agreement threshold, while training-from-scratch (κ =
.77 ± .09) obtained significantly higher performance.

In the OSA F3-M2 dataset, no difference between pre-training (κ =
.74 ± .10), training-from-scratch (κ = .74 ± .09), and fine-tuning (κ =
.75 ± .09) was observed. In the OSA F3-F4 dataset, pre-training (κ =
.53 ± .17) on average performed under the threshold of substantial
agreement, with significantly lower performance compared to training-
from-scratch (κ = .70 ± .09) and fine-tuning (κ = .70 ± .11).

In the insomnia F3-M2 dataset, no difference between pre-
training (κ = .77 ± .09), training-from-scratch (κ = .77 ± .07), and
fine-tuning (κ = .78 ± .07) was observed. In the insomnia F3-F4
dataset, pre-training (κ = .56 ± .13) on average performed under the
threshold of substantial agreement, with significantly lower
performance compared to training-from-scratch (κ = .73 ± .10)
and fine-tuning (κ = .73 ± .11).

In the RBD F3-M2 dataset, fine-tuning (κ = .67 ± .08) significantly
outperformed pre-training (κ = .60 ± .13) and training-from-scratch
(κ = .57 ± .12), with training-from-scratch on average performing
under the threshold of substantial agreement. Similarly, in the RBD
F3-F4 dataset, performance was significantly higher in fine-tuning

TABLE 1 Distributions of the training, validation, and test sets in fine-tuning l1, l2, and l3. Before fine-tuning, the model was first pre-trained on the source data.
While train/validation/test set distributions were 80%/10%/10% in pre-training and training-from-scratch, the train data in fine-tuning systematically lowered. Set
sizes of fine-tuning l3 have been used in analyses where the training strategy was compared to pre-training and training-from-scratch. Distributions in absolute
subject numbers with percentages in parentheses.

Name Train/validation/test set distributions in OSA and insomnia
datasets (N = 60)

Train/validation/test set distribution for RBD
datasets (N = 22)

Fine-
tuning l1

6/6/6
(10%/10%/10%)

6/2/2
(30%/10%/10%)

Fine-
tuning l2

12/6/6
(20%/10%/10%)

12/2/2
(55%/10%/10%)

Fine-
tuning l3

24/6/6
(40%/10%/10%)

18/2/2
(80%/10%/10%)
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(κ = .60 ± .11) than in pre-training (κ = .37 ± .18) and training-from-
scratch (κ = .54 ± .13). Here, training-from-scratch significantly
outperformed pre-training, although on average both performed
under the threshold of substantial agreement.

Sleep stage specific performance results for each target dataset are
detailed in Supplementary Figures S1–S4. In general, a decrease in
performance across all sleep stages was observed in target datasets with
lower Kappa scores. In addition, two notable observations can be made.

TABLE 2 Demographic and sleep information of source and target datasets. Healthy datasets included healthy adults without any known medical, psychiatric, or
sleep disorders. The sleep-disordered OSA, insomnia, and RBD datasets included adults without any other known sleep comorbidities.

Healthy (n = 94) Healthy (n = 60) OSA (n = 60) Insomnia (n = 60) RBD (n = 22)

Dataset Source Target Target Target Target

Age 35.9 ± 13.5 42.4 ± 11.3 44.1 ± 11.0 43.4 ± 12.9 65.3 ± 7.0

Age Range [18–64] [20–64] [22–65] [20–64] [50–79]

Sex (m/f) 36/58 26/34 48/12 30/30 13/9

BMI (kg/m2) 24.3 ± 3.2 25.2 ± 3.8 28.1 ± 5.4 25.6 ± 4.1 26.1 ± 4.7

TST (min) 431.7 ± 49.9 418.4 ± 52.6 414.1 ± 67.2 391.5 ± 68.6 393.8 ± 69.6

SOL (min) 11.3 ± 12.2 11.3 ± 13.7 18.5 ± 22.8 22.9 ± 17.1 13.5 ± 7.2

WASO (min) 33.7 ± 25.8 41.8 ± 28.1 42.7 ± 29.2 46.4 ± 36.6 59.6 ± 28.6

SE 87.9% ± 9.1% 85.9% ± 10.1% 82.1% ± 14.7% 80.1% ± 12.3% 79.2% ± 12.7%

Sleep Distribution 12% Wake 14% Wake 16% Wake 19% Wake 19% Wake

8% N1 8% N1 11% N1 10% N1 13% N1

43% N2 43% N2 43% N2 42% N2 41% N2

19% N3 18% N3 16% N3 15% N3 13% N3

18% REM 18% REM 14% REM 14% REM 13% REM

BMI, body mass index; AHI, apnea-hypopnea index; TST, total sleeping time; SE, sleep efficiency; WASO, wake after sleep onset; SOL, sleep onset latency.

FIGURE 2
Boxplots of performances per training strategy in each target dataset. Red dashed line indicates the κ = .6 threshold of substantial agreement. Stars
denote p-value of the test, where *, **, and *** denote p < .017, p < .01, and p < .001, respectively, while n.s. denotes “not significant” or p > .017. Training-
from-scratch is abbreviated to “scratch”.
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First, in all RBD datasets, a relatively high degree ofmissed REM sleep is
demonstrated, with REM recall ranging between 26.1% and 61.6%
accuracy. Second, in the pre-training strategy on all F3-F4 dataset,
46.0%–61.4% of the N3 epochs were incorrectly classified as N2 sleep.

3.2 Population differences

In pre-training, no significant differences between the three
populations were observed using a one-way ANOVA, p = .09, ηp2 = .01.

In training-from-scratch, significant differences between the three
populations were found, p < .001, ηp2 = .11. Post-hoc independent
t-tests showed higher performance in the aggregated healthy datasets
(κ = .80 ± .09) than in OSA (κ = .72 ± .09), p < .001, d = .86, and
insomnia (κ = .75 ± .09), p < .001, d = .50. Also, outperformance of
insomnia compared to OSA was shown, p = .005, d = .37.

In fine-tuning, higher performance in insomnia (κ = .76 ± .09)
than in OSA (κ = .72 ± .10) was observed, p = .007, d = .35.

3.3 Channel differences

To study the effect of channel on performance, results of the
three training strategies (pre-training, training-from-scratch and
fine-tuning) in each age-matched population (healthy, OSA, and
insomnia) were grouped by either the F3-M2 or the F3-F4 electrode
channel. An independent t-test showed significantly higher
performance using the F3-M2 channel (κ = .78 ± .09) than using
the F3-F4 channel (κ = .66 ± .16), p < .001, d = .96.

3.4 Effect of set size in fine-tuning

Figure 3 illustrates the impact on performance when including
more subjects from the target dataset for fine-tuning, referred to as
fine-tuning l1 (lowest amount), fine-tuning l2 (medium amount),
and fine-tuning l3 (highest amount). A detailed overview of the
statistical differences can be found in Table 4.

TABLE 3 Performances of each training strategy and statistical differences. For each dataset, average Kappa agreement and the percentage of subjects above the
threshold of substantial agreement (κ > .6) is given, followed by the group statistic and post hoc analysis between training strategies if significant. For the healthy
datasets, no group statistic is shown since comparison is between two training strategies. Training-from-scratch is abbreviated to “scratch”.

Dataset N Method Kappa
Mean
± SD

Above substantial
agreement (%)

Repeated measures
ANOVA:

p-value, effect size

Post-hoc
comparison
between

Paired samples
t-test:

p-value, effect
size

Healthy
F3-M2

60
Pre-train κ = .84 ± .06 98%

Pre-train & Scratch p < .001, d = .27
Scratch κ = .82 ± .08 97%

Healthy
F3-F4

60
Pre-train κ = .53 ± .16 35%

Pre-train & Scratch p < .001, d = 1.87
Scratch κ = .77 ± .09 93%

OSA
F3-M2

60

Pre-train κ = .74 ± .10 93%

p = .26, ηp2 = .002Scratch κ = .74 ± .09 95%

Fine-tune κ = .75 ± .09 95%

OSA
F3-F4

60

Pre-train κ = .53 ± .17 40%

p < .001, ηp2 = .29

Pre-train & Scratch p < .001, d = 1.26

Scratch κ = .70 ± .09 87% Pre-train & Fine-tune p < .001, d = 1.21

Fine-tune κ = .70 ± .11 83% Scratch & Fine-tune p = .84, d = .02

Insomnia
F3-M2

60

Pre-train κ = .77 ± .09 98%

p = .27, ηp2 = .003Scratch κ = .77 ± .07 98%

Fine-tune κ = .78 ± .07 100%

Insomnia
F3-F4

60

Pre-train κ = .56 ± .13 43%

p < .001, ηp2 = .23

Pre-train & Scratch p < .001, d = 1.39

Scratch κ = .73 ± .10 93% Pre-train & Fine-tune p < .001, d = 1.42

Fine-tune κ = .73 ± .11 92% Scratch & Fine-tune p = .53, d = .04

RBD
F3-M2

22

Pre-train κ = .60 ± .13 50%

p = .002, ηp2 = .11

Pre-train & Scratch p = .43, d = .18

Scratch κ = .58 ± .12 45% Pre-train & Fine-tune p = .001, d = .65

Fine-tune κ = .67 ± .08 91% Scratch & Fine-tune p < .001, d = .89

RBD
F3-F4

22

Pre-train κ = .37 ± .18 14%

p < .001, ηp2 = .31

Pre-train & Scratch p < .001, d = 1.06

Scratch κ = .54 ± .13 36% Pre-train & Fine-tune p < .001, d = 1.51

Fine-tune κ = .60 ± .11 55% Scratch & Fine-tune p = .01, d = .51
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For each of the datasets with the F3-M2 channel datasets (OSA
F3-M2, insomnia F3-M2, and RBD F3-M2), a repeated measures
ANOVA indicated no significant differences between l1, l2, and l3. In
contrast, significant differences were observed for each dataset with
the F3-F4 channel (OSA F3-F4, insomnia F3-F4, and RBD F3-F4).
Notably, in OSA and insomnia F3-F4 datasets, average performance
above substantial agreement is reached in l1. In RBD F3-F4,
substantial agreement is realized in l2.

3.5 Fine-tuning dynamics

The loss function for fine-tuning showed that optimal loss was
achieved after 5 to 35 training iterations, depending on the target
dataset and the number of subjects used for fine-tuning, after which
overfitting occurred (see Figure 4A). A small number of subjects
used for fine-tuning led to faster loss increase. In contrast, a
logarithmic decrease in loss function was observed in training-
from-scratch.

The model’s accuracy exhibited similar differences between the
training-from-scratch and fine-tuning methods. While in training-
from-scratch, accuracy followed a logarithmic increase, optimal
accuracy in fine-tuning was reached early, stabilized, and
potentially decreased slightly as training continued (see Figure 4B).

For fine-tuning, learning rate was set to 1e−5 and only initial
weights were loaded, without making any CNN layers non-trainable.
Higher learning rates and an increasing number of non-trainable
CNN layers exhibited similar loss functions, albeit faster overfitting

occurred. Also, with higher learning rates, accuracy was lower and
plateaued earlier.

4 Discussion

In this study we evaluated three strategies (pre-training,
training-from-scratch, fine-tuning) for training an automated
single-channel EEG sleep staging model when mismatches
between the source and target dataset are present. Each strategy
was tested on a total of eight target datasets, comprising of healthy
subjects and patients with OSA, insomnia, or RBD; combined with
the F3-M2 and F3-F4 EEG channels.

4.1 Model performance

First of all, our results illustrate the strong performance of the
TinySleepNet automated sleep staging model (Supratak and Guo,
2020). Our Healthbed dataset yielded slightly higher agreement
(κ = .84 and κ = .82 in pre-trained and trained-from-scratch
healthy F3-M2 datasets, respectively) compared to previously
reported performances on the sleep-EDF (κ = .77–.80) and
MASS (κ = .77–.82) datasets (Supratak and Guo, 2020). Other
automated single-channel EEG models have shown similar
performance for sleep-EDF dataset (κ = .81; Phan et al., 2019)
and MASS dataset (κ = .78–82; Phan et al., 2019; Mousavi et al.,
2019; Seo et al., 2020).

FIGURE 3
Boxplots of performances for fine-tune l1, l2, and l3 in each target dataset. Red dashed line indicates the κ = .6 threshold of substantial agreement.
Stars denote p-value of the test, where *, **, and *** denote p < .017, p < .01, and p < .001, respectively, while n.s. denotes “not significant” or p > .017.
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The average performance in the OSA (κ = .74) and insomnia (κ =
.77) datasets on the F3-M2 channel were lower compared to healthy
individuals, with medium to large effect sizes ranging between d =
.35 and d = .86 (Cohen, 1960). Since datasets were age-matched,
sampled from the same database, and other known sleep
comorbidities were excluded, underperformance with respect to
healthy subjects can potentially be attributed to the sleep
characteristics of the disorders. An earlier study with frontal
(wearable) single-channel EEG automated sleep staging reported
underperformance specifically in the differentiation of N1 sleep due
to a lack of measured occipital activity (Lucey et al., 2016). This can
particularly affect performance in OSA and insomnia due to the
increased sleep fragmentation. Another possible explanation is that
the dataset sizes used for training in this study have been too small to
sufficiently capture the heterogeneity of sleep within in these sleep-
disordered populations.

In RBD, agreement levels of κ = .67 (F3-M2 channel) and κ =
.60 (F3-F4 channel) were obtained using fine-tuning, an average
increase of κ = .15 compared with pre-training and an average
increase of κ = .08 compared with training-from-scratch. Despite
reaching or exceeding substantial agreement according to the
general interpretation of the Kappa statistic (Landis and Koch,
1977), performance still falls below that obtained for the other
tested sleep disorders. Although, to the best of our knowledge,
studies evaluating human inter-rater agreement for sleep scoring

in RBD are lacking, relatively low agreement has been reported in
presence of Parkinson’s disease (κ = .61; Danker-Hopfe et al.,
2004), a neurodegenerative disease strongly associated with RBD
(Schenck, Boeve and Mahowald, 2013). Automated sleep scoring
performance in RBD was higher than previously described in a
cohort of 22 RBD subjects, with performances of κ = .45 before and
κ = .56 after subject-specific fine-tuning (i.e., fine-tuning on each
patient’s first night PSG, tested on the second night; Andreotti
et al., 2018).

4.2 Training strategies

Several conclusions can be drawn from the study regarding the
preferred training strategy in presence of population mismatches.
In the age-matched OSA F3-M2 and insomnia F3-M2 datasets, no
difference in performance between the three training strategies was
observed, implying it is inconsequential whether the model was
trained on the healthy F3-M2 source dataset (pre-training), target
dataset (training-from-scratch) or both (fine-tuning). These
results suggest a similarity in data characteristics between the
healthy source and the OSA and insomnia target when datasets
are solely mismatched for these sleep disorders, without the
presence of age-related population mismatches. Hence, sleep of
OSA and insomnia patients is considered abnormal, and abnormal

TABLE 4 Fine-tune l1, l2, and l3 performances and statistical differences. For each dataset, average Kappa agreement and the percentage of subjects above the
threshold of substantial agreement (κ > .6) is given, followed by the group statistic and post hoc analysis between fine-tune l1, l2, and l3 if significant.

Dataset N Fine-tune
size

Kappa
Mean
± SD

Substantial
agreement (%)

Repeated measures
ANOVA:

p-value, effect size

Post-hoc
comparison
between

Paired samples
t-test:

p-value, effect
size

OSA
F3-M2

60

l1 κ = .74 ± .09 95%

p = .17, ηp2 = .003l2 κ = .74 ± .09 95%

l3 κ = .75 ± .09 95%

OSA
F3-F4

60

l1 κ = .65 ± .13 73%

p < .001, ηp2 = .03

l1 & l2 p = .003, d = .20

l2 κ = .67 ± .12 82% l1 & l3 p < .001, d = .39

l3 κ = .70 ± .11 83% l2 & l3 p = .007, d = .20

Insomnia
F3-M2

60

l1 κ = .77 ± .09 95%

p = .05, ηp2 = .005l2 κ = .77 ± .08 97%

l3 κ = .78 ± .07 100%

Insomnia
F3-F4

60

l1 κ = .70 ± .11 85%

p < .001, ηp2 = .01

l1 & l2 p = .20, d = .06

l2 κ = .71 ± .12 85% l1 & l3 p < .001, d = .28

l3 κ = .73 ± .11 92% l2 & l3 p < .001, d = .21

RBD
F3-M2

22

l1 κ = .65 ± .09 73%

p = .28, ηp2 = .009l2 κ = .66 ± .09 77%

l3 κ = .67 ± .08 91%

RBD
F3-F4

22

l1 κ = .56 ± .12 41%

p = .02, ηp2 = .03

l1 & l2 p = .04, d = .39

l2 κ = .60 ± .10 50% l1 & l3 p = .01, d = .38

l3 κ = .60 ± .11 55% l2 & l3 p = .99, d = .00
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characteristics including increased sleep fragmentation are likely
decreasing sleep staging performance. However, these are not
characteristics that cause population mismatches and thus
require targeted training.

In contrast, for the RBD F3-M2 dataset, differences between the
training strategies were found. Underperformance in pre-training
suggests specific characteristics in RBD that the model needs to train
on, either caused by the older age of RBD patients and/or by sleep
characteristics inherent to RBD. Previously reported lower
agreement in RBD (κ = .54) in comparison to age-matched
healthy subjects (κ = .73) indicate likely not all
underperformance in RBD is age-related (Cooray et al., 2019).
Notably, for each of the training strategies, the missed
classification of REM sleep is especially problematic, but lower
agreement in RBD is observed across all sleep stages (see
Supplementary Figure S4). These findings are in line with earlier
studies (Andreotti et al., 2018; Cooray et al., 2019). We hypothesize
that the frontopolar EEG channel can capture the characteristic
elevated muscle activity during REM sleep in RBD, complicating the
correct classification of REM sleep when muscle tone is present.
Additionally, the generally lower performance could be attributed to
microstructural changes and decreased sleep stability (Christensen
et al., 2016; Cesari et al., 2021) that are associated with RBD.
However, future research on RBD sleep staging is needed for the
further characterization of the lower performance.
Underperformance in training-from-scratch can likely be

explained because insufficient RBD data is available to obtain
robust performance. This practical challenge can emerge given
that RBD is a less prevalent sleep disorder. Hence, when
differences in data characteristics are present and target data
availability is limited, fine-tuning is the preferred training
strategy. Medium to large effect sizes (d = .65–.87; Cohen, 1960)
emphasize the strong advantages of fine-tuning for RBD data.

Results in the F3-F4 target datasets suggest that, when
channel mismatches with the source dataset are present, pre-
training (on the F3-M2 channel) is not sufficient. Training on the
target is necessary through either training-from-scratch or fine-
tuning. Notably, fine-tuning delivers similar classification
performance to training-from-scratch, while requiring only
half the amount of target data. The threshold of substantial
agreement is already exceeded with fine-tuning on 12 (6 train
+6 validation) target subjects in OSA and insomnia. Again, for
the RBD F3-F4 dataset specifically, fine-tuning is preferred since
the dataset is too small for training-from-scratch. Here,
substantial agreement is reached with 14 (12 train
+2 validation) target subjects.

4.3 Transfer learning

Making several layers of a model non-trainable is perceived as
a common method for transfer learning (e.g., Shin et al., 2016;

FIGURE 4
Examples of accuracy (A) and loss function (B) for training-from-scratch (abbreviated to “scratch”), fine-tuning l1, l2, and l3 for the best (insomnia F3-
M2, left) and worst (RBD F3-F4, right) performing validation sets. Averaged across the ten models of the cross-validation.
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Tajbakhsh et al., 2016). However, for TinySleepNet, we achieved
best performance by fine-tuning the full model, hence making no
layers non-trainable and only loading in the weights of the pre-
trained model. This irregularity is possibly explained by the low
computational costs and straight-forward design of the model,
making it more flexible to tune to new data characteristics.
Furthermore, early stopping and a lowered learning rate (from
1e−4 to 1e−5) were necessary to prevent the model from overfitting
on the target data, especially when larger mismatches with the
source dataset were present and/or when target data availability
was limited. Optimal model performance in fine-tuning was
reached after 5 to 35 training iterations, while requiring at
least 80 training iterations when using pre-training or training-
from-scratch as training strategy, emphasizing the lower
computational costs for transfer learning. Our findings are
similar to observations for fine-tuning in channel mismatches
using the SeqSleepNet model, where full fine-tuning of the model
showed superior sleep staging performance for transferring from
the C4-A1 channel in the MASS dataset to the Fpz-Cz channel in
the sleep-EDF dataset (Phan et al., 2019). However, in the
DeepSleepNet, an architecture more similar to the
TinySleepNet, fine-tuning only the softmax layer for channel
changes seems to yield highest performance (Phan et al., 2019).
These results suggest fine-tuning is a model and mismatch specific
process, and no one-size-fits-all strategy is (yet) known.

4.4 Single-channel (wearable) EEG

There is an ongoing debate on the preferred channel for
single-channel EEG automated sleep staging, including the
suggested use of Fpz-Cz, Pz-Oz (see, e.g., Supratak et al.,
2017), and Fp1-Fp2 (Radha et al., 2014). In this study, we
chose to include leads present in the PSG setup which are as
close as possible to the frontopolar locations often used in
wearable EEG. For the development of these technologies, it is
valuable to understand how public PSG databases can be
leveraged through pre-training and fine-tuning. Especially
since validation of wearable (single-channel) EEG is often
limited to small and homogeneous recordings of healthy
subjects because of costs, time, and ethical regulations (Finan
et al., 2016; Garcia-Molina et al., 2018; Arnal et al., 2020). Also, in
contrast to similar models (Supratak et al., 2017; Korkalainen
et al., 2019; Mousavi et al., 2019), TinySleepNet can potentially be
implemented for real-time sleep stage classification in wearable
EEG, due to the model’s architecture. With the fine-tuning
approach used in this study, we have shown that such a sleep
staging model can also be trained for less prevalent disorders with
specific characteristics, such as RBD. Furthermore, the use of
wearable EEG for prolonged monitoring and the collection of
longitudinal data can enable new possibilities to develop
personalized sleep staging models, wherein (subject-specific)
fine-tuning can play a critical role (Andreotti et al., 2018;
Phan et al., 2020).

Our results consistently show underperformance of the F3-F4
channel (κ = .66) when compared with the F3-M2 channel (κ =
.78) with a large effect (d = .96; Cohen, 2013), possibly because the
F3 and F4 locations share more signal characteristics of interest,

which are subtracted when re-referencing the channels. Two
studies have been performed in the sleep-disordered
population using frontal channels in wearable EEG, both
showing κ = .67 agreement levels (Lucey et al., 2016;
Levendowski et al., 2017). It should be noted that also lower
inter-rater reliability for manual scoring of the recordings is
reported (κ = .69 in Garcia-Molina et al., 2019; κ = .70 in
Levendowski et al., 2017; κ = .78 in Popovic et al., 2014),
suggesting an upper limit to the sleep staging information
extracted from wearable frontal electrodes.

Furthermore, it is imperative to acknowledge that sleep
characteristics may exhibit variation across channels, and thus
can cause channel mismatches. A prime example is the reduced
N3 classification performance observed in the F3-F4 datasets when
the model is pre-trained on F3-M2, in contrast to the results
obtained with training-from-scratch or fine-tuning on F3-F4 (see
Supplementary Figures S1–S4). These findings suggest a distinct
manifestation of the characteristic N3 slow wave sleep in the two
channels.

4.5 Limitations

Some limitations of the current study should be considered.
First, while typically hundreds of sleep recordings are required to
reach expert-level performance using deep learning (Biswal et al.,
2018; Guillot and Thorey, 2021; Perslev et al., 2021), in the current
study, 94 recordings for pre-training, and 60 recordings for
training-from-scratch, have been used. Potentially, larger
sample sizes can achieve better model training and higher
performance, especially in the sleep-disordered populations
which can be characterized by increased variability. However,
the goal of the current study was to investigate different
training strategies in the presence of data mismatches. Hence,
only data from one sleep center was used, allowing to isolate
population and channel mismatches, and avoiding potential
additional mismatches from PSG setup differences or
differences in manual sleep score training.

Second, TinySleepNet discerns from other related automated
models for the potential implementation into wearable EEG due to
its low computation costs and unidirectional LSTM, which allows
for real-time classification. However, implementation here is only
theorized, and should be tested in future research. Since the current
study is limited to gold-standard EEG recordings only, it remains
unknown how fine-tuning performance is affected when recordings
from dry electrodes with higher signal-to-noise ratios are used as
target.

Last, one should consider the generalizability of this study
carefully. Although other single-channel EEG deep learning
classification models (Tsinalis et al., 2016; Supratak et al.,
2017; Korkalainen et al., 2019; Mousavi et al., 2019; Phan
et al., 2019; Seo et al., 2020; Guillot and Thorey, 2021) have
related architectures, their differences potentially result in
model-specific transfer learning dynamics (Phan et al., 2019).
Similarly, the preferred applied methods that have been
investigated in this work are possibly specific to the database,
available amount of data, and mismatches between the source
and target datasets.
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5 Conclusion

In this work, we have shown that the preferred training
strategy for automated single-channel automated sleep stager
depends on the presence of data mismatches, type of mismatch,
and the availability of data. OSA and insomnia target datasets
show no population mismatches when the model is pre-trained
on healthy individuals. In contrast, RBD sleep recordings
contain characteristics, either inherent to the pathology or
age-related, which demand targeted model training. Targeted
training is also needed when source and target datasets
differences cause channel mismatches. In the presence of
these data mismatches, fine-tuning can yield similar to
superior performance than training-from-scratch, with a
significantly reduced dataset size.
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