5 research outputs found

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: A community perspective

    Get PDF
    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary

    EUFOREA Rhinology Research Forum 2016: report of the brainstorming sessions on needs and priorities in rhinitis and rhinosinusitis

    Get PDF
    The first European Rhinology Research Forum organized by the European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA) was held in the Royal Academy of Medicine in Brussels on 17th and 18th November 2016, in collaboration with the European Rhinologic Society (ERS) and the Global Allergy and Asthma European Network (GA2LEN). One hundred and thirty participants (medical doctors from different specialties, researchers, as well as patients and industry representatives) from 27 countries took part in the multiple perspective discussions including brainstorming sessions on care pathways and research needs in rhinitis and rhinosinusitis. The debates started with an overview of the current state of the art, including weaknesses and strengths of the current practices, followed by the identification of essential research needs, thoroughly integrated in the context of Precision Medicine (PM), with personalized care, prediction of success of treatment, participation of the patient and prevention of disease as key principles for improving current clinical practices. This report provides a concise summary of the outcomes of the brainstorming sessions of the European Rhinology Research Forum 2016

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    Get PDF

    Nitrogen fixation does not axiomatically lead to phosphorus limitation in aquatic ecosystems

    Get PDF
    A long-standing debate in ecology deals with the role of nitrogen and phosphorus in management and restoration of aquatic ecosystems. It has been argued that nutrient reduction strategies to combat blooms of phytoplankton or floating plants should solely focus on phosphorus (P). The underlying argument is that reducing nitrogen (N) inputs is ineffective because N2-fixing species will compensate for N deficits, thus perpetuating P limitation of primary production. A mechanistic understanding of this principle is, however, incomplete. Here, we use resource competition theory, a complex dynamic ecosystem model and a 32-year field data set on eutrophic, floating-plant dominated ecosystems to show that the growth of non-N2-fixing species can become N limited under high P and low N inputs, even in the presence of N2 fixing species. N2-fixers typically require higher P concentrations than non-N2-fixers to persist. Hence, the N2 fixers cannot deplete the P concentration enough for the non-N2-fixing community to become P limited because they would be outcompeted. These findings provide a testable mechanistic basis for the need to consider the reduction of both N and P inputs to most effectively restore nutrient over-enriched aquatic ecosystems. This article is protected by copyright. All rights reserved
    corecore