8,182 research outputs found

    About the screening of the charge of a proton migrating in a metal

    Full text link
    The amount of screening of a proton in a metal, migrating under the influence of an applied electric field, is calculated using different theoretical formulations. First the lowest order screening expression derived by Sham (1975) is evaluated. In addition 'exact' expressions are evaluated which were derived according to different approaches. For a proton in a metal modeled as a jellium the screening appears to be 15 +/- 10 %, which is neither negligible not reconcilable with the controversial full-screening point of view of Bosvieux and Friedel (1962). In reconsidering the theory of electromigration, a new simplified linear-response expression for the driving force is shown to lead to essentially the same result as found by Sorbello (1985), who has used a rather complicated technique. The expressions allow for a reduction such that only the scattering phase shifts of the migrating impurity are required. Finally it is shown that the starting formula for the driving force of Bosvieux and Friedel leads exactly to the zero-temperature limit of well-established linear response descriptions, by which the sting of the controversy has been removed.Comment: 14 pages, 5 figure

    Resistivity due to low-symmetrical defects in metals

    Full text link
    The impurity resistivity, also known as the residual resistivity, is calculated ab initio using multiple-scattering theory. The mean-free path is calculated by solving the Boltzmann equation iteratively. The resistivity due to low-symmetrical defects, such as an impurity-vacancy pair, is calculated for the FCC host metals Al and Ag and the BCC transition metal V. Commonly, 1/f noise is attributed to the motion of such defects in a diffusion process.Comment: 24 pages in REVTEX-preprint format, 10 Postscript figures. Phys. Rev. B, vol. 57 (1998), accepted for publicatio

    Theory for the electromigration wind force in dilute alloys

    Get PDF

    Resistivity due to low-symmetrical defects in metals

    Get PDF

    Theory for the electromigration wind force in dilute alloys

    Full text link
    A multiple scattering formulation for the electromigration wind force on atoms in dilute alloys is developed. The theory describes electromigration via a vacancy mechanism. The method is used to calculate the wind valence for electromigration in various host metals having a close-packed lattice structure, namely aluminum, the noble metals copper, silver and gold and the 4d4d transition metals. The self-electromigration results for aluminum and the noble metals compare well with experimental data. For the 4d4d metals small wind valences are found, which make these metals attractive candidates for the experimental study of the direct valence.Comment: 18 pages LaTeX, epsfig, 8 figures. to appear in Phys. Rev. B 56 of 15/11/199

    Accurate evaluation of the interstitial KKR-Green function

    Full text link
    It is shown that the Brillouin zone integral for the interstitial KKR-Green function can be evaluated accurately by taking proper care of the free-electron singularities in the integrand. The proposed method combines two recently developed methods, a supermatrix method and a subtraction method. This combination appears to provide a major improvement compared with an earlier proposal based on the subtraction method only. By this the barrier preventing the study of important interstitial-like defects, such as an electromigrating atom halfway along its jump path, can be considered as being razed.Comment: 23 pages, RevTe

    Towards designing robust coupled networks

    Get PDF
    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy

    Novel electronic and magnetic properties of ultrathin chromium oxide films grown on Pt(111)

    Get PDF
    The growth of epitaxial metal–oxide films on lattice-mismatched metal substrates often results in the formation of unique overlayer structures. In particular, epitaxial chromium oxide films grown on Pt(111) exhibit a p(2×2) symmetry through the first two monolayers of growth which is followed by a (√3×√3)R30° phase that is attributed to the growth of a Cr2O3(0001) overlayer. Ultraviolet photoelectron spectroscopy measurements have been performed on the CrOx/Pt(111) system. The electronic structures of CrO2, Cr2O3, and Cr3O4 were calculated using the linear muffin-tin orbital method in the atomic sphere approximation. Comparison of the photoemission valence band spectra with the calculated density of states indicates that the CrOx initially grows in a cubic spinel Cr3O4 structure. Beyond ∼0.2 monolayers, the metallic behavior of the CrOx overlayer begins a transformation to an insulating state. The measured valence emission for the p(2×2) phase beyond ∼0.2 monolayers is more consistent with either a γ-Cr2O3(111) overlayer or possibly a reconstructed Cr2O3(0001) overlayer. © 1998 American Vacuum Society
    • …
    corecore