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Resistivity due to low-symmetrical defects in metals
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(Received 14 November 1997

The impurity resistivity, also known as the residual resistivity, is calculatedinitio using multiple-
scattering theory. The mean free path is calculated by solving the Boltzmann equation iteratively. The resis-
tivity due to low-symmetrical defects is calculated for the fcc host metals Al and Ag and the bcc transition
metal V. Commonly, 1f/ noise is attributed to the motion of such defects in a diffusion process. The results for
single impurities compare well to calculations by other authors and to experimental values.
[S0163-182698)03820-X

[. INTRODUCTION The theory, which is used to calculate the impurity resis-

tivity, is described in Sec. Il. The theory makes use of the

The theoretical explanation for electrical resistivity is well calculation of the electron wave function described in Ref.

known. Electrons move through a regular lattice of metallO, which already requires a heavy computation of a

atoms without any resistance. As soon as irregularities arereen’s-function matrix. In Sec. Il results are shown for the
introduced into this metal, electrons are scattered, whichost metal Al. The calculations for singlel@and 4sp impu-

gives rise to a finite resistivity. The temperature dependencéties in Al are compared with experimental and other theo-

of this quantity is mainly due to scattering of electrons byret|cal values in Sec. [ A In Sec;. III'B, various calculgthps

phonons. At zero temperature, when no phonons are prese@ reported, which are interesting in view of the reliability

the resistivity is determined by defects only, such as impurit)}neasurements mentioned above. Vacancies and moving host

atoms. Then it is the only remaining contribution, and there2toms in Al are considered. Resistivity calculations for im-

fore it is often called the residual resistivity. In this paper.pu”t'es’ a vacancy, several impurity-vacancy pairs, and an

resistivity due to impurity atoms embedded in the metal Iat—'srrgéurl'tvy %tetst]jt:a;(rjc?rf sﬁ?nlirl];rmcgllfurggongst%r'?ﬁeatr)icd?rgﬁs:ir]

tice is considered, the impurity resistivity, which has been>~=>" """ . S ;

extensively studied experimentai‘ly. tion metal V are reported in Sec. V. A summary is given in
An interesting problem is the problem of resistancesec' VI

noise? Over a large range of frequencies the spectral density

varies as 1. This can be explained, if these resistance fluc- Il. THEORY

tuations arise from a kind of diffusion process. In most cases

the frequencies range from 1 to 1000 Hz, which correspon%q

to typical times between jumps. The noise is attributed to : ; ; )

defect, which can be of any kind, jumping back and forth. Aasymmetrlcal defects. Finally, an expression for the general

. . ) . _ized Friedel sum, used in the present paper, will be given.
simple example of such a defect is an impurity-vacancy Pallrhe conductivity of a sample can be calculated performing
of which we are able to calculate the resistivity for different

. . an integration over the Fermi surfate,
orientations.

Many attempts have been made to calculate the impurity @2 d
resistivity. The simplest methods consider an atom or a clus- gll= f _Skvi i (1)
ter of atoms embedded in free spdéeMore sophisticated (2m)3h Jrs vk ke
approaches usab initio methods like the Korringa-Kohn- i . ]
RostokerKKR) theory ™ to describe an impurity embedded in Which the velocityv, of an electron with quantum num-
in a metal lattice. If this formalism is applied for two spin Persk=(nk) is extracted from the host electronic structure.
directions, magnetic impurities and materials can also bé finite electron mean free path, is due to the presence of
treated® In most cases a substitutional or interstittimpu- ~ defects or phonons, and can be calculated by solving the
rity atom is considered. In this work we mainly concentrate®duation
on the resistivity due to defects, which play a role in substi-
tutional electromigration, such as a vacancy, an impurity- A= 0
vacancy pair, and an atom on its way to a neighboring vacant KTk
lattice site. The symmetry of most of the considered defects
is reduced compared to a single impurity atom, which mag-This equation follows easily from the linearized Boltzmann
nifies the required computational effort. equation. In this paper, scattering by a static defect is con-

First the general theory will be presented. After that, some
uations are given for the resistivity due to low-

Vk+2 Ak/Pk/kj|. (2)
kl
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sidered. The defect can consist of a number of perturbed host

! ide — i nyn’
atoms: an impurity and one or two vacancies. The probabil- AEEanEL (1-g"%) 13211(1—Qvo'dth),_i,_,, (10
ity Py for the transition through scattering from st&teo “
k' determines the electron lifetimg: where the scattering matrices of the atomic host potertflals

and the ones of the atomic alloy potentitllsare calculated
from their phase shifts,

t]'=—sin( 77, €' . (12)

The host phase shifts ne}'g, for an alloy positionp are
defined to be zero, if the positigndoes not coincide with a
Prrc=2mCN| Ty |28 ex— €rr). (4) host pqsition. The alloy phase s'h.ifts for the host. pqsiljion_
are defined to be zero if the position does not coincide with
The calculation of the transition matrik, requires knowl- an alloy position.
edge of the electronic wave function of the alloy. This wave The formalism is made suitable to handle more general
function can be calculated using multiple-scattering theorydefects by making use of a void system as a reference system
The formulation of this theory was given in Ref. 10. For theinstead of the unperturbed host. The impurities and perturbed
sake of clarity, some quantities appearing in the theoryhost atoms are replaced by free space in this reference sys-
which are necessary in the evaluation of the impurity resistem. The Green’s-function matrix of this reference system is

=2 Py 3
k/

For a low concentratiorr of a certain kind of defect, the
transition probabilityP ., for elastic scattering is given by

tivity, will be given here too. calculated from the host Green’s-function matrix
The alloy wave-function coefficients,,, and host wave-
1 1C1 h I 1 f ’ ’ : _ _ P
function coefficientsc, |, are related by a matrix equation gvoid.nn’ — cnn _2 Griy(th 1+g)j1j12912n _ (12
Jil2
CknL= 2 AEE’,CEH,L, : (5)  The host Green's-function matrix is calculated by an integra-
n'L’ tion over the Brillouin zone

The matrix labeln refers to an atomic site, either at a host

!

positionR; or at an alloy positiorR,,, andL=(l,m) sum- g = oo o, d3k[b(k,R,y )+ b(k,R,)M (k)
marizes the angular momentum labels. The ma&lR, will Bz _
be defined below. The host wave-function coefficients are XbT(—k,R,)]e'kRon', (13

evaluated at the Fermi energ = 2, and can be written as _ o
As derived in Refs. 7 and 14,,,, can be written within

) iIWgL(k)eikRn multiple-scattering theory as

CknL:_ \/_ 12" (6)
k[ —(INgld€)]
o k=2 Crn* TlCinL s (14
The vectorW?, (k) is defined by nt
whereT] is defined as
WA (k)= by (k,Ryi"Va(k), (7) 1 _ )
. TL= = —Sin( 77— 7)€ "1™ 7ol (15
whereb(k,R;,) is a lattice sum,
We define an auxiliary quantit®,,, as
b(k,Rn) =2 B(Ry)e™* R, (8) i
i’ anL:\/_—TECknL- (16)
K
andi'V{' and\9 are an eigenvector and the corresponding
eigenvalue of the KKR matrixM (k) =t""1—b(k,0). The Now the sum ovek’ in Eqg. (2) can be rewritten as a
matrix B is defined with Gaunt coefficient€, ,,» and Fermi-surface integral and a set of equations in terms of
spherical Hankel functionk,” (r)=h,"(xr)Y,(r) as Wi, (k) and Qy, can be derived straightforwardly. The
equation forA, becomes
BLLI(R):iI_I,_le CLLreriIHhE—(R). (9) ’
L” Ak:TE Vk+C 2 anLQEan/IEE/ ’ (17)
nn'LL’

It has to be stressed that the lattice sum in &8).extends ) ] . ) )
over all host positions wheR,, is not a host lattice position. Wherel is a Fermi-surface integral with, as a factor in the
When it is a host lattice positioR; , the corresponding term integrand

is excluded. Theg=0 label in Eq.(6) refers to the eigen-

value, which corresponds to a zero KKR matrix, and thereby o 27 WoL(K)* AW, (K) ikRyp
determines the electronic structure of the metal. L Qg7 Jes IV NO(K)| '

The matrixArL‘E’, in Eq. (5) is defined a¥ (189
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= E+ ! E (21
: pp el
Equations(20) and (21) describe the current density in a
sample, containing only one kind of defect, with one particu-
lar orientation. In a real sample the orientations of a defect
‘\ are distributed randomly. Such a distribution results in a sca-
lar resistivity, which is given by

impuyi
o 11 + ! + ! (22)
Prec =3\ oy " oL by
for an fcc metal, and by
FIG. 1. Definition of the electric-field directions in the fcc struc-
ture. 1 £+ 2 23
Pbec 3 Pl Py

Equation(17) can be solved iteratively. In the calculation of
7, we can make use of the optical theorem, which states th4pr & bcc metal. _
the sum ovek’ in Eq. (3) can be connected to the diagonal Finally, in order to check the requirement of charge neu-

element of the transition matrix trality for the potentials to be used, we need an expression
for the generalized Friedel sum. We will show that it is pos-
TE‘1= —2c Im Ty. (19 sible to derive such an expression, using the formalism pre-

_ ) sented above. According to Lodder and Braspenfirige
The comparison of the two expressions ), Egs.(3) and  glectron density of states of a systertE) can be written
(19), can serve as a test for the accuracy of the Fermi-surfacgii respect to an arbitrary reference system as
integrals. For a more complete description of the theory for

host and alloy wave functions, the reader is referred to Ref. 2 d

10. Here we just add that an initil has to be inserted in n(E)=n"(E)+ —AmggTr In T(E), (24)

Eq. (18), e.g., A= TEvk or the Ziman approximatiott: This

leads to a new set of, according to Eq(17). With this new  WhereT(E) is thet matrix of the system, with respect to the

set the integrals in Eq18) can be recalculated. This proce- reference system. Conventionally the unperturbed host has

dure is repeated until the set obtained equals the inserted ségrved as a reference system for a dilute alloy. For a general
Now we give the current density-field relation for a metal defect the void system serves as the natural reference system.

containing low-symmetrical defects. In such a metal the reln that case thé matrix of the system can be written as

sistivity is anisotropic, i.e., it depends on the direction of the _ voides — 1

current. Thus the relation between the electric field and the T(E)=t(1-G"%) " (29

current density for, e.g., an impurity-vacancy pair in the fcCThe integrated density of staté§(Er) = [EFn(E)dE up to

structure is given by the Fermi energy counts the total number of electrons ac-
1 1 1 commodated in the system. The difference in the number of
j=—E+—E +—E,, (20)  electrons between the alloy and the ha&t, is found by
ol pL pz subtractingN"*S(Ep)

whereE| lies along the jump direction of the migrating atom,
and bothE, and E, are in perpendicular directions. The
different directions are shown in Fig. 1. For an impurity- 2 _
vacancy pair in the bcc structure there are two inequivalent = arg dett— —arg def1—G*o%)
directions, which are displayed in Fig. 2, and therefore the
current density can be written as

Zr=N(Eg) —N"S{Ep)

2 2 )
— —arg dett"+ —arg def1- gty (26)

/‘ /‘ which is the generalized Friedel sum. In the case of spheri-
‘ ‘ cally symmetric scatterers this general expression simplifies
to

vacancy
2 2
Ze==2> (21+1) 7P~ =N (21+1) 7]

' 2 2 |
E, /‘1 ___________ /‘ — - arg detl— GYodt) + —arg det1- gvoidghy
\‘zmpurlty ‘ -

FIG. 2. Definition of the electric-field directions in the bcc struc- in which Nfj e is the number of host atoms in the void
ture. The directions perpendicular Ey are equivalent. region.
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This expression is more general than expressions used ir 10 T e

the past* which only applied to simple substitutional and *—*g‘dﬁizﬁ‘fed values
interstitial alloys for which no intermediate void reference H" 3d™'a¢® or 3d"4s%4p"

system was needed. We will show that Ef7) reduces to 8
well-established expressions applicable to those simple sys-
tems. In order to do this, it is useful to extend the sum in Eq. &
(12 to interstitial sites. This can be done by defining host
scattering matrices for those positionstaso. By that the
elements of the matrix t{~1+¢G) " '=th(1+Gt") " are
equal to zero, when one of the two or both indices refer to an
interstitial site. The resulting matrix equatio§'°%=¢G
—G(t""1+ G) "G contains only matrices of the same dimen-
sion, and Eq(12) can be rewritten as

g: (1_gv0idth)—1gvoid. (28)

O—O values for shifted potentials

%

6

pQem/at

4

—

p

0 : - .
Note that this equation can be derived directly from &) Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As
in the case of a substitutional alloy, where only lattice sites 5 3 Impurity resistivity of 3 and 4sp atoms in Al. For the
are occupied. In the case of an interstitial 'mpu”ty_ the rT?"’."Sd metals, constructed potentials are used with either (Gifled
trices are enlarged due to the presence of the interstitialicieg or two (filled squares4s electrons. Results obtained for the

atom. - . 4s%4p" atoms are also indicated by filled squares. Open circles
The addition of a nonscattering atom does not affect theorrespond to resistivity values obtained with shifted potentials for

host charge. This can be seen from E2j7), and is trivial  ca(4s?), the ad"4s! transition-metal atoms, and thep 4toms.
from a physical point of view. The matrices of the third and

fourth term can be multiplied, leading to . . . .
P g dure, because it corresponds to a shift of the atomic potential

(1—G¥oidth)~1(1—g¥oidt) = 1 — (1 — gvoidth) ~1gvoid ¢ —th) by a constant energy. The charge of the system is calculated
" using the generalized Friedel sum expression given in Sec.
=1-g(t—-t"). (29 1. This procedure has been applied to transition-metal impu-
Hence the Friedel sum is given by rities with the 31"4s! electronic configuration, and to the Ca
(4s?) and 4sp impurities. The impurity resistivities, ob-
2 hp 2 h tained with these potentials, are given by open circles in Fig.
ZF:;% 21+ 1) (mi— ")~ —arg def1-G(t—t)], 3. The addition of charge leads to an increase of the resistiv-
ity in all cases, except for Sc, Ge, and As. The agreement
(30 . ;
. o o with the experimental values becomes much better. For all
which has been applied in the past to substitutibhahd  4sp impurities, and for the transition-metal impurities with

interstitial® alloys. more than six 8 electrons, the agreement is very good.
The addition of surface charge is a crude attempt to simu-
. IMPURITY RESISTIVITIES IN AL late the effect of charge relaxation in the alloy. Still, in the

case of the 8 impurities Fe, Co, and Ni, it enhances the
accuracy of the resistivity significantly. Unfortunately, this is
In this section a single @ or 4sp impurity is considered not the case for the othed3mpurities. Apparently, the sur-
embedded in unperturbed Al host. This means that théace charge does not simulate all effects of charge relaxation
charge transfer to the surrounding host atoms as well as lain the right way. Therefore it would be very interesting to
tice distortion are neglected. Furthermore, an impurity atonrepeat the calculations for Sc, Ti, V, Cr, and Mn with self-
has an assumed electronic configuration, which in realiticonsistently calculated potentials. The method of calculation
may depend on its metallic environment. From Fig. 3, inof the resistivity is not affected by the use of such potentials.
which the calculated impurity resistivities are shown, it is The resistivities of these impurities in Al were already
clear that this configuration is very important. The filled calculated in Refs. 3 and 18, and recently in Ref. 4."gkko
circles refer to calculations in which the impurity atom hasand Mrosaf? used the spherical band approximation, which
one 4 electron. The values indicated by filled squares arameans that the Fermi surface is approximated by a sphere.
obtained for impurity atoms with twoslelectrons. The im- They found resistivities, which were approximately equal to
purity resisitivity of atoms having twosglelectrons decreases the ones following from the well-known free-electron for-
with increasing atomic number, while it shows a maximummula of Friedel® which only contains the scattering phase
for Mn, when only one 4 electron is present. The experi- shifts. Just as the other authors mentioned they found an
mental values,indicated in the figure by asterisks, also showunderestimation of the resistivities, which was attributed to
such a maximum, but the values are underestimated by thbe anisotropy of the Fermi surface. Papanikolaou, Stefanov,
calculations. and Papastaikoudisried to incorporate these anisotropy ef-
The potentials used in the calculations just described déects in a tricky way and found values for the 8npurities,
not lead to a charge neutral system, which is unphysical. Theshich were too large. In our calculation this anisotropy is
neutrality can be restored by adding a surface charge to thielly and consistently taken into account, but still the impu-
atomic sphere¥’ This procedure is called the shifting proce- rity resistivities are underestimated.

A. 3d and 4sp impurities in Al
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O pcalculated
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O 8 r pexperiment

o——o0
pshifted potentials

p(LQcm/at%)

— 0O

FIG. 4. Vacancy pair with two different orientations with re-
spect to the current. The geometrical cross section is smaller when
the vacancy pair is aligned with the current.

Pd Ag Cd In Sn Sb

B. A migrating Al atom

) ) o FIG. 5. Calculated and measured resistivities spdmpurities
According to our calculation the resistivity of a vacancy jy ag.

in Al'is 0.57 Q) cm/at. %. We used host phase shifts for all
surrounding Al atoms. In first order the resistivity is the SUM () cm/at. % and p,=1.31 wQ cm/at. %). The much

of the resistivities of the separate scatterers. Therefore, it i§maller resistivity of a pair of vacancies aligned along the

likely that the vacancy resistivity is underestimated. In the, irent is easily explained intuitively with the help of Fig. 4.

present case account of the scattering by the first shell ergggming a monotonic relation between the geometrical and
larges the resistivity only slightly, to 0.60 cm/at. %. Our  gcattering cross sections, the scattering cross section is obvi-
value contradicts with earlier calculations of Van Ek a”dously larger when the pair of vacancies is aligned perpen-
Lodder who found 0.93uQ) cm/at. %. , dicular to the current. However, from the results for
The vacancy resistivity is also extracted from simulta-jynrity-vacancy pairs, to be presented below, it follows that
neous measurements of the resistivity and the expansion @is intuitive, classical explanation does no justice to the
both the total volume and the lattice constant in an Alganwum-mechanical character of the scattering process. Mi-

0 : .
samplg% In this way a value of 3.uQ) cm/at. % is found, croscopically, one has to consider the scattering probability
which is much larger than the value we found. This couldy,e to a pair of potentials andw, lying at a distanceR,

have several reasons. One of the reasons can be that ich, of course, is not simply equal to the sum of the indi-
electronic structure of the vacancy defect is not calculateg;q,;g probabilities. Even in lowest order in the potential,

self-consistently. From Sec. Ill A, indeed, a strong depenyyis probability Py, , calculated in the free-electron model,
dence on the electronic structure was observed. Another redg using plane waves, is proportional to

son may be that the volume expansion is not entirely due to
the absorption of vacancies, or that the enlargement of the
resistivity is not merely due to the presence of vacancies.
During a jump the resistivity changes from the initial jn Whichvk,k=47-rfr2drj0(|k’—k|r)v(r) is a real quantity
value, via the value at the saddle point, back to the initiakor a spherical potential in free space. For a pair of vacan-
value. The saddle-point value also depends on the directiogies,v =w. It is clear that the cosine term does not have a
of the jump with respect to the direction of the current. In thedefinite sign, and that the contribution will be different for
calculation a single saddle-point atom is taken into accounfgifferent alignments oR. Our results for the pair of vacan-
so scattering by the two small moon-shaped vacancies negtes imply that the average contribution of this term is posi-
to the atom is neglected. This procedure leads to a resistivitijye for R perpendicular to the current, and negative for
which is smaller than the one of the vacancy for all direc-alignment along the current. For large valuesRothis term

tions of the current, namely =0.55 u() cm/at. % andp,  will average out, and the individual probabilities just add.
andp, both have the value of 0.36() cm/at. %. The resis-

tivities for the different directions are defined by Eg0). It
is expected that the small vacancies contribute considerably
to the resistivity, leading to a value, which is larger than the The experimentally obtained resistivities of thebim-
vacancy resistivity. purities in Ag(Ref. 1) have already been used in Ref. 10 in
Calculations for a pair of vacancies show that the resisthe analysis of their wind valence. In this section the impu-
tivity, averaged over all current directions, is equal to therity resistivities will be calculated for a single impurity, an
resistivity of two single vacancies. Perhaps a larger cluster ainpurity next to a vacancy, and an impurity at the saddle
perturbed host atoms or self-consistently calculated phasgoint during a diffusion jump. In most of the calculations the
shifts could alter this conclusion. The symmetry of a pair isperturbation of the surrounding host atoms is not taken into
the same as the symmetry of an atom at the saddle poinhccount. In Fig. 5, it is seen that the calculations, indicated
Therefore, Eq(20) holds. The parallel resistivity, turns out by filled circles, and the measurements, indicated by aster-
to be 0.94u) cm/at. %, which is considerably smaller than isks, show the same trend. However, the measured values are
the resistivity in the other two directionsp(=1.24 larger. Only the value of 1.1&Q cm/at. % for the 4*°

P~ Vb T W2, + 200 Wi cod (K’ —K).R],  (31)

IV. 5SP IMPURITIES IN AG
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Pd Ag Cd In Sn Sb

FIG. 7. Calculated resistivities in Ag ofs impurities, located

FIG. 6. Calculated resistivities of pairs of &Bimpurity and a  Next to a vacancyinitial position) and at the saddle-point position.
vacancy in Ag. The resistivities of the single impurities are given
for comparison. tions, paverage do€s not equal the sum of the separate resis-

tivities of vacancy and impurity. The latter sum rather equals

impurity Pd is an overestimation. A much lower value of PI- . _ N )
0.02 £Q cm/at. % is found, when ad?5s! electronic con- In .Flg. 7 the |mpur|.ty re_S|st|V|t|es at the sadd_le point for
figuration is used for the Pd atom. The experimental value the d|fferent current directions are cqmpared with thg corre-
0.44 Q) cm/at. % lies between the two theoretical values,Spondlng resistivities for the impurity-vacancy pair. The
which suggests that the electronic configuration is a mixtur(§""d_Ci_le'pomt _reS|s_,t|V|ty roughly follows the one at the initial
of both. The calculated resistivities are only slightly affectedPSition. Againp; is the largest, but for an atom at the saddle
by taking into account a shell of perturbed host atoms. Apomt.the Cross section is not expected to depend strpngly on
maximum increase of 0.04€) cm/at. % is found for In the direction, because the current “sees” one scattering atom

The shifting procedure to achieve charge neutrality is alsd’o™ all directions. Just as in the case of Al, the two small
applied in this case. The missing charge had to be added {goon-_shaped vacancies a_round the saddle-point atom are not
the impurity. The resulting values are indicated by opent.aken Into account, Wh'Ch is expected to lead 1o an underes-
circles in Fig. 5. Just as in the case of impurities in Al, thelimation of the resistivity.
resistivities are enlarged. However, the agreement with ex-
periment does not improve in this case, because the enlarge- V. TRANSITION-METAL IMPURITIES IN V
ment is too strong.

o . . . The measured resistivities of thel @npurities Ti and C:
Similar calculations were performed in Ref. 6 using self-

%eurllmweg;alra\é?&iet?{at-rth ;l?tﬁfrsbjséze (;if%ltu?ﬁfntgﬁ r':(;?u‘ern resistivity is much larger than the other ones. The value
is bounded, because of the decreased space at the sadmgasured for thedimpurity Ta of 1.5.0 cm/at. % is very
point. Nevertheless our values are reasonable.

The resistivities for §p impurity-vacancy pairs are given
in Fig. 6. The resistivity for a single vacancy is 0.82
©Q cm/at. %, which is the value for Ag in the figure. The 4
resistivity of an impurity-vacancy pair, being aligned with
the current,p|, is larger than the resistivity, when they are

5 T
pcalculated
pmeasured

aligned perpendicular to the currempt, and p,. This is in X3 -
contradiction to the intuitive explanation for the resistivity of &
a vacancy pair in Al in the different directions in terms of a %
geometrical cross section, which is given in Sec. Il B and O}:Lz 1
illustrated in Fig. 4. However, this behavior can be under- &

stood from the simple expressi@g81). The impurity poten-
tial w is certainly attractive, which corresponds to an overall 1
negative sign, and a vacancy potential repulsive. So, on
the average, the cosine term in Eg1) has the opposite sign
compared with the scattering by two vacancies. This implies o , .

. . : . . Sc Ti Vv Cr Mn
a conversion of the behavior, in agreement with or finding
for the impurity-vacancy pair. Notice also that the resistivity ~ FIG. 8. Calculated and measured resistivities dfi@ipurities in
of an impurity-vacancy pair, averaged over all current direcVanadium.
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resistivity seems to decrease monotonically in all three se-
ries. The low value for Mn is striking in view of the high
values for the single impurity and the impurity-vacancy pair.
The saddle-point resistivities are larger than the initial point
values. The small vacancies on either side of the atom could
even enhance this effect.

p//
Oo— p i
§ & paverage_ i ]

VI. SUMMARY

p(LQcm/at%)
(%¥e/wogsr)d

In this paper a multiple-scattering method has been de-
scribed for the calculation of the impurity resistivity. It
makes use of the calculated wave function coefficients, in-
troduced in Ref. 10. The linearized Boltzmann equation can
be solved iteratively. One iteration step involves the calcula-
tion of a Fermi-surface integral. The integrand is the product
of the vector mean free path, which depends on the crystal
4 T V or Mn Y Zr Nb Mo Te La T Ta W Re momentum, and two host wave-function coefficients. In its
present formulation, the method is suitable to handle compli-
cated defects such as an atom during a diffusion jump. It has
been used to calculate the resistivity due to impurities, va-
cancies and pair defects in Al, Ag, and V.
close to the calculated value of 1A} cm/at. %. The resistivities of 8 and 4sp impurities in Al have been

The calculated resistivity of a vacancy in V is larger thancalculated, basically in order to see if the calculations make
of any of the 31 impurities, namely, 4.94Q cm/at. %. This  Sense. This seru;f1 of impurities was investigated before by
results in resistivities of impurity-vacancy pairs, varying Several authors}* and experimental values are available.
from 5 to 9 xQ cm/at. %, as can be seen from Fig. 9. The Their calculated resistivities turned out to depend strongly on
large value for the Mn impurity is also seen in the 8eries  the atomic electronic configuration, which is used to con-
in the left panel of the figure, but the effect is not as pro-Struct the crystal potential of the alloy. This is especially
nounced as in the case of a single impurity. The resistivitympPortant for transition-metal impurities, where, e.g., the en-
turns out to be fairly isotropic, i.egy~p, in Eq. (21). ergies of 3l and 4 levels are almost equal. In this series it

It is seen that the resistivity of addimpurity next to a IS S€en thgt thg resistivity decreases with atomic number,
vacancy tends to be larger than that of @ @purity and when_the impurity has two gle]ectrons. The shape of Fhe
smaller than that of adimpurity. The resistivity for the @  €xperimentally observed peak is reproduced, when the impu-
impurities is the lowest for V, while for thedtimpurities it Tty carries one & electron. , ,
is lowest for Mo, which has an additional valence electron. Another consequence of the construction of the potentials,
For the &l impurities the resistivity of the impurity-vacancy the lack of charge neutrality, can be repaired by adding sur-
pair decreases monotonically with the atomic number. face charge to the atomic sphere of the impurity. This pro-

The resistivities for impurities at the saddle point are de-edure enlarges most calculated values, and improves the
picted in Fig. 10. They show a larger anisotropy. Exceptiondreement with experiments. Especially for transition-metal
are Cr, Mo, and W. Apart from the high value of Cr, the atoms with manyd electrons, and for gp impurities, the _

agreement becomes very good. Apparently the calculation
10 - 0 takes the essential features of the scattering process into_ac-
count. The strong dependence on the electronic configuration
oo p as well as on the addition of surface charge make it interest-
I 4 ing to use self-consistent potentials in our calculation.
STy 1 | 1° A vacancy plays an important role in the diffusion pro-
cess. Its calculated resistivity in Al of 0,62 cm/at. % is
much smaller than the experimentally obtained value of 3
p cm/at. %. The resistivity of a host Al atom, halfway
along its jump path to a neighboring vacant site, depends on
the direction of the electrical current, and it is different from
its value for the atom at its initial position. Both the direction
and position dependence give rise to fluctuations in the re-
sistivity on a time scale of 10" s. The value of 0.41
©Q cm/at. %, which is the average over all current direc-
tions, is smaller than the value at the initial position, the
latter being equal to the resistivity of a vacancy. In this cal-
S o M Y 3 N WMo Te La hr e W RS culation the two small moon-shaped vacancies next to the

jumping atom are not taken into account, and it is expectable
FIG. 10. Calculated resistivities ofd3 4d, and 5 impurities,  that they will enlarge the resistivity. The resistivity of a pair

located at the saddle-point position in V. of vacancies depends on the direction of the current. If the

FIG. 9. Calculated resistivities ofd3 4d, and & impuirities,
located next to a vacancy in V.
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pair is aligned with the current, the resistivity is smallest.while the resistivity of Ti is underestimated. The values for a
This can be attributed to a smaller cross section for such @ impurity-vacancy pair and an impurity halfway along its
configuration. If the resistivity is averaged over all currentjump path are larger than the ones for a single impurity.
directions, it equals the resistivity of two single ones. In conclusion, it has been shown that the resistivity due to
The calculated resistivities due to theimpurities in  |Jow-symmetrical defects can be calculated accurately. The
Ag show a similar dependence on atomic number as the exalculated impurity resistivites compare reasonably well
perimental valued! Just as for impurities in Al, the resistiv- \ith the available experimental material. They may even im-

ities are underestimated. However, after achieving charggrove when self-consistent potentials for the alloy are used.
neutrality by adding a surface charge to the impurity, they

become too large. The resistivity due to an impurity-vacancy
pair is smaller than the sum of the impurity and vacancy
resistivities. When the pair is aligned with the current, the
resistivity is largest and approximately equals that sum. The This work was sponsored by the National Computing Fa-
fact that the resistivity is largest in that direction is in con- cilities Foundation(NCF) for the use of supercomputer fa-
tradiction with the smaller geometrical cross section. An im-cilities, with financial support from the Nederlandse Organi-
purity halfway along its jump path has a larger resistivity satie voor Wetenschappelik OnderzoeNetherlands
than the impurity-vacancy pair in spite of the neglected smallDrganization for Scientific Research, NW.COrhe authors
vacancies. wish to acknowledge the contribution of P. J. Harte to a

The calculated resistivities of the impurities Cr and Ta inwell-designed computer program for the calculation of the
the bcc transition metal V agree fairly well with experiment, impurity resistivity.

ACKNOWLEDGMENTS

*Present address: Max-Planck-InstitUt fdetallforschung, Seestr.  °J. van Ek and A. Lodder, J. Alloys Compiig5, 207 (1992.

92, D-70174 Stuttgart, Germany. 103, p. Dekker, A. Lodder, and J. van Ek, Phys. Re\6@312 167
"Present address: Seagate Technology, 7801 Computer Avenue (1997.
South, Bloomington, MN 55435. 113. M. Ziman, inPrinciples of the Theory of Solidedited by J. M.
1J. Bass, inMetals: Electronic Transport Phenomenedited by Ziman (Cambridge University Press, Cambridge, 1972
K.-H. Hellwege and J. L. Olsen, Landolt-Bstein, New Series, 127 | odder and J. P. Dekker, iRroceedings of the First Interna-
Group Ill, Vol. 15, Pt. a(Springer-Verlag, Berlin, 1992 tional Alloy Conference, Athens, 199€dited by A. Gonis, A.

2
3P' Dutta and P. M. Horn, Rev. Mod. Phys3, 497 (1982). ~ Meike, and P. E. A. TurchiPlenum, New York, 1997 pp.
P. M. Boerrigter, A. Lodder, and J. Molenaar, Phys. Status Solidi 467477,

. B 119 K91 (1983. _ ) 13A. Lodder and P. J. Braspenning, Phys. Revi®B10 215(1994).
N. Papanikolaou, N. Stefanou, and C. Papastaikoudis, Phys. Rey4':0r a review, see A. Lodder and J. P. Dekker, Phys. Re498

B 49 16 117(1994.

) . N . 10 206(1994.

5

I. Mertig, E. Mrosan, and P. Ziesche, Multiple Scattering 5 .
Theory of Point Defects in Metals: Electronic Propertieslited J.(ll\gglgnaar, A. Lodder, and P. T. Coleridge, J. Phyd.37839
?%’el\;\é'r]:bi!?gz’igv igl\g?“ng’ A- Unimann, -and B. Wihelmi 16, "y dppeneer and A. Lodder, J. Phys1F, 1901(1987.

5T. Vojta, I. Mertig, and R. Zeller, Phys. Rev. B, 15761 . R H-Lasseter and P. Soven, Phys. Re8,2476(1973.
(1992 18R. Schipke and E. Mrosan, Phys. Status Soliddg K95 (1978.

" 9 . .

73. van Ek and A. Lodder, J. Phys.: Condens. Magei7363  J- Friedel, Nuovo Cimento Supp, 287 (1958.

(1991. 0R. O. Simmons and R. W. Balluffi, Phys. ReM 7, 62 (1960.

8]. Mertig, R. Zeller, and P. H. Dederichs, Phys. Rew¥B 16 178 ZlCalculations of the electromigration wind force for this series of
(1993. impurities in Ag were published previously in Ref. 10.



