380 research outputs found

    Analysis of national and regional landslide inventories in Europe

    Get PDF
    A landslide inventory can be defined as a detailed register of the distribution and characteristics of past landslides in an area. Today most landslide inventories have the form of digital databases including landslide distribution maps and associated alphanumeric information for each landslide. While landslide inventories are of the utmost importance for land use planning and risk management through the generation of landslide zonation (susceptibility, hazard and risk) maps, landslide databases are thought to greatly differ from one country to another and often also within the same country. This hampers the generation of comparable, harmonised landslide zonation maps at national and continental scales, which is needed for policy and decision making at EU level as regarded for instance in the INSPIRE Directive and the Thematic Strategy for Soil Protection. In order to have a clear understanding of the landslide inventories available in Europe and their potential to produce landslide zonation maps as well as to draw recommendations to improve harmonisation and interoperability between landslide databases, we have surveyed 37 countries. In total, information has been collected and analysed for 24 national databases in 22 countries (Albania, Andorra, Austria, Bosnia and Herzegovina, Bulgaria, Czech Republic, Former Yugoslav Republic of Macedonia, France, Greece, Hungary, Iceland, Ireland, Italy, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and UK) and 22 regional databases in 10 countries. At the moment, over 633,000 landslides are recorded in national databases, representing on average less than 50% of the estimated landslides occurred in these countries. The sample of regional databases included over 103,000 landslides, with an estimated completeness substantially higher than that of national databases, as more attention can be paid for data collection over smaller regions. Yet, both for national and regional coverage, the data collection methods only occasionally included advanced technologies such as remote sensing. With regard to the inventory maps of most databases, the analysis illustrates the high variability of scales (between 1:10 000 and 1:1 M for national inventories, and from 1:10 000 to 1:25 000 for regional inventories), landslide classification systems and representation symbology. It also shows the difficulties to precisely locate landslides referred to in historical documents only. In addition, information on landslide magnitude, geometrical characteristics and age reported in national and regional databases greatly differs, even within the same database, as it strongly depends on the objectives of the database, the data collection methods used, the resources employed and the remaining landslide expression. In particular, landslide initiation and/or reactivation dates are generally estimated in less than 25% of records, thus making hazard and hence risk assessment difficult. In most databases, scarce information on landslide impact (damage and casualties) further hinders risk assessment at regional and national scales. Estimated landslide activity, which is very relevant to early warning and emergency management, is only included in half of the national databases and restricted to part of the landslides registered. Moreover, the availability of this information is not substantially higher in regional databases than in national ones. Most landslide databases further included information on geo-environmental characteristics at the landslide site, which is very important for modelling landslide zoning. Although a number of national and regional agencies provide free web-GIS visualisation services, the potential of existing landslide databases is often not fully exploited as, in many cases, access by the general public and external researchers is restricted. Additionally... (for full extended abstract please see attached document)JRC.H.7-Climate Risk Managemen

    Part I - Landslide Inventory and Susceptibility and Hazard Zoning – Introduction

    Get PDF
    Landslide inventories and susceptibility and hazard maps are key tools for land use planning and management, civil protection plans, civil engineering works, and risk reduction programmes. Their importance helps understanding why approximately one sixth of all contributions to the Second World Landslide Forum were related to recent advances in these topics. This volume presents the state of the art on landslide inventory and susceptibility and hazard zoning. It contains experiences, methods and techniques applied in different physiographic, geological and climate settings of the world and for different types of landslides, from site-specific investigations to global scale analysis.JRC.H.7-Climate Risk Managemen

    Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium

    Get PDF
    For a 277 km<sup>2</sup> study area in the Flemish Ardennes, Belgium, a landslide inventory and two landslide susceptibility zonations were combined to obtain an optimal landslide susceptibility assessment, in five classes. For the experiment, a regional landslide inventory, a 10 m × 10 m digital representation of topography, and lithological and soil hydrological information obtained from 1:50 000 scale maps, were exploited. In the study area, the regional inventory shows 192 landslides of the slide type, including 158 slope failures occurred before 1992 (model calibration set), and 34 failures occurred after 1992 (model validation set). The study area was partitioned in 2.78×10<sup>6</sup> grid cells and in 1927 topographic units. The latter are hydro-morphological units obtained by subdividing slope units based on terrain gradient. Independent models were prepared for the two terrain subdivisions using discriminant analysis. For grid cells, a single pixel was identified as representative of the landslide depletion area, and geo-environmental information for the pixel was obtained from the thematic maps. The landslide and geo-environmental information was used to model the propensity of the terrain to host landslide source areas. For topographic units, morphologic and hydrologic information and the proportion of lithologic and soil hydrological types in each unit, were used to evaluate landslide susceptibility, including the depletion and depositional areas. Uncertainty associated with the two susceptibility models was evaluated, and the model performance was tested using the independent landslide validation set. An heuristic procedure was adopted to combine the landslide inventory and the susceptibility zonations. The procedure makes optimal use of the available landslide and susceptibility information, minimizing the limitations inherent in the inventory and the susceptibility maps. For the established susceptibility classes, regulations to link terrain domains to appropriate land rules are proposed

    Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli

    Get PDF
    To avoid detrimental interactions with intestinal microbes, the human epithelium is covered with a protective mucus layer that traps host defence molecules. Microbial properties such as adhesion to mucus further result in a unique mucosal microbiota with a great potential to interact with the host. As mucosal microbes are difficult to study in vivo, we incorporated mucin-covered microcosms in a dynamic in vitro gut model, the simulator of the human intestinal microbial ecosystem (SHIME). We assessed the importance of the mucosal environment in this M-SHIME (mucosal-SHIME) for the colonization of lactobacilli, a group for which the mucus binding domain was recently discovered. Whereas the two dominant resident Lactobacilli, Lactobacillus mucosae and Pediococcus acidilactici, were both present in the lumen, L. mucosae was strongly enriched in mucus. As a possible explanation, the gene encoding a mucus binding (mub) protein was detected by PCR in L. mucosae. Also the strongly adherent Lactobacillus rhamnosus GG (LGG) specifically colonized mucus upon inoculation. Short-term assays confirmed the strong mucin-binding of both L. mucosae and LGG compared with P. acidilactici. The mucosal environment also increased long-term colonization of L. mucosae and enhanced its stability upon antibiotic treatment (tetracycline, amoxicillin and ciprofloxacin). Incorporating a mucosal environment thus allowed colonization of specific microbes such as L. mucosae and LGG, in correspondence with the in vivo situation. This may lead to more in vivo-like microbial communities in such dynamic, long-term in vitro simulations and allow the study of the unique mucosal microbiota in health and disease

    Identification of landslide hazard and risk ‘hotspots’ in Europe

    Get PDF
    Landslides are a serious problem for humans and infrastructure in many parts of Europe. Experts know to a certain degree which parts of the continent are most exposed to landslide hazard. Nevertheless, neither the geographical location of previous landslide events nor knowledge of locations with high landslide hazard necessarily point out the areas with highest landslide risk. In addition, landslides often occur unexpectedly and the decisions on where investments should be made to manage and mitigate future events are based on the need to demonstrate action and political will. The goal of this study was to undertake a uniform and objective analysis of landslide hazard and risk for Europe. Two independent models, an expert-based or heuristic and a statistical model (logistic regression), were developed to assess the landslide hazard. Both models are based on applying an appropriate combination of the parameters representing susceptibility factors (slope, lithology, soil moisture, vegetation cover and other- factors if available) and triggering factors (extreme precipitation and seismicity). The weights of different susceptibility and triggering factors are calibrated to the information available in landslide inventories and physical processes. The analysis is based on uniform gridded data for Europe with a pixel resolution of roughly 30 m 9 30 m. A validation of the two hazard models by organizations in Scotland, Italy, and Romania showed good agreement for shallow landslides and rockfalls, but the hazard models fail to cover areas with slow moving landslides. In general, the results from the two models agree well pointing out the same countries with the highest total and relative area exposed to landslides. Landslide risk was quantified by counting the number of exposed people and exposed kilometers of roads and railways in each country. This process was repeated for both models. The results show the highest relative exposure to landslides in small alpine countries such as Lichtenstein. In terms of total values on a national level, Italy scores highest in both the extent of exposed area and the number for exposed population. Again, results agree between the two models, but differences between the models are higher for the risk than for the hazard results. The analysis gives a good overview of the landslide hazard and risk hotspots in Europe and allows a simple ranking of areas where mitigation measures might be most effective.JRC.H.5-Land Resources Managemen

    Recommendations for the quantitative analysis of landslide risk

    Get PDF
    This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts.JRC.H.5-Land Resources Managemen

    The State of Soil in Europe : A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report— SOER 2010

    Get PDF
    This report presents a pan-European perspective on the state soil in Europe in light of available data held within the European Soil Data Centre (ESDAC) and the research activities within the Joint Research Centre’s Soil Action. Managed by the JRC on behalf of EU institutions, the ESDAC operates as a focal point for pan-European data and information on soil. The core of this report was prepared as the Soil Assessment (EEA, 2010f) of the ‘Environment — state and outlook 2010 Report’, generally referred to as the SOER 2010. Coordinated by the European Environment Agency, the SOER series is aimed primarily at policymakers, in Europe and beyond, involved with framing and implementing policies that could support environmental improvements in Europe. The information also helps European citizens to better understand, care for and improve Europe's environment. The soil assessment was one of a set of 13 Europe-wide thematic assessments of key environmental themes and the only one coordinated by the JRC. The initial contribution from the JRC to the SOER exercise has been updated with additional material that could not be included in the SOER due to space restrictions, together with supplementary information that was not available at the time of the publication of the original text. The report describes the knowledge and understanding of the state of soil in Europe and the main trends, outlook and policy responses for the key processes affecting soil resources in Europe. Unfortunately, our knowledge base on many of the key functions of soil that deliver vital environmental services and goods are still poorly developed. This aspect will be a key focus of the activities of the Soil Action for the next SOER, foreseen for 2015. A set of pertinent issues and facts from the assessment are presented in the Key Messages section that can be found at the start of this report. Much more information and data can be found that the web sites of the ESDAC (http://esdac.jrc.ec.europa.eu) or the JRC Soil Action (http://eusoils.jrc.ec.europa.eu). All SOER 2010 outputs are available on the SOER 2010 website: www.eea.europa.eu/soer.JRC.H.5-Land Resources Managemen
    corecore