120 research outputs found
Aurintricarboxylic Acid Is a Potent Inhibitor of Influenza A and B Virus Neuraminidases
Background: Influenza viruses cause serious infections that can be prevented or treated using vaccines or antiviral agents, respectively. While vaccines are effective, they have a number of limitations, and influenza strains resistant to currently available anti-influenza drugs are increasingly isolated. This necessitates the exploration of novel anti-influenza therapies. Methodology/Principal Findings: We investigated the potential of aurintricarboxylic acid (ATA), a potent inhibitor of nucleic acid processing enzymes, to protect Madin-Darby canine kidney cells from influenza infection. We found, by neutral red assay, that ATA was protective, and by RT-PCR and ELISA, respectively, confirmed that ATA reduced viral replication and release. Furthermore, while pre-treating cells with ATA failed to inhibit viral replication, pre-incubation of virus with ATA effectively reduced viral titers, suggesting that ATA may elicit its inhibitory effects by directly interacting with the virus. Electron microscopy revealed that ATA induced viral aggregation at the cell surface, prompting us to determine if ATA could inhibit neuraminidase. ATA was found to compromise the activities of virus-derived and recombinant neuraminidase. Moreover, an oseltamivir-resistant H1N1 strain with H274Y was also found to be sensitive to ATA. Finally, we observed additive protective value when infected cells were simultaneously treated with ATA and amantadine hydrochloride, an antiinfluenza drug that inhibits M2-ion channels of influenza A virus. Conclusions/Significance: Collectively, these data suggest that ATA is a potent anti-influenza agent by directly inhibiting th
p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis.
Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis. We find that p120 regulates actomyosin contractility through concomitant binding to RhoA and the centralspindlin component MKLP1, independent of cadherin association. In anaphase, p120 is enriched at the cleavage furrow where it binds MKLP1 to spatially control RhoA GTPase cycling. Binding of p120 to MKLP1 during cytokinesis depends on the N-terminal coiled-coil domain of p120 isoform 1A. Importantly, clinical data show that loss of p120 expression is a common event in breast cancer that strongly correlates with multinucleation and adverse patient survival. In summary, our study identifies p120 loss as a driver event of chromosomal instability in cancer
A Comparison of Parallel Pyrosequencing and Sanger Clone-Based Sequencing and Its Impact on the Characterization of the Genetic Diversity of HIV-1
BACKGROUND: Pyrosequencing technology has the potential to rapidly sequence HIV-1 viral quasispecies without requiring the traditional approach of cloning. In this study, we investigated the utility of ultra-deep pyrosequencing to characterize genetic diversity of the HIV-1 gag quasispecies and assessed the possible contribution of pyrosequencing technology in studying HIV-1 biology and evolution. METHODOLOGY/PRINCIPAL FINDINGS: HIV-1 gag gene was amplified from 96 patients using nested PCR. The PCR products were cloned and sequenced using capillary based Sanger fluorescent dideoxy termination sequencing. The same PCR products were also directly sequenced using the 454 pyrosequencing technology. The two sequencing methods were evaluated for their ability to characterize quasispecies variation, and to reveal sites under host immune pressure for their putative functional significance. A total of 14,034 variations were identified by 454 pyrosequencing versus 3,632 variations by Sanger clone-based (SCB) sequencing. 11,050 of these variations were detected only by pyrosequencing. These undetected variations were located in the HIV-1 Gag region which is known to contain putative cytotoxic T lymphocyte (CTL) and neutralizing antibody epitopes, and sites related to virus assembly and packaging. Analysis of the positively selected sites derived by the two sequencing methods identified several differences. All of them were located within the CTL epitope regions. CONCLUSIONS/SIGNIFICANCE: Ultra-deep pyrosequencing has proven to be a powerful tool for characterization of HIV-1 genetic diversity with enhanced sensitivity, efficiency, and accuracy. It also improved reliability of downstream evolutionary and functional analysis of HIV-1 quasispecies
PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation
PROTEUS2 is a web server designed to support comprehensive protein structure prediction and structure-based annotation. PROTEUS2 accepts either single sequences (for directed studies) or multiple sequences (for whole proteome annotation) and predicts the secondary and, if possible, tertiary structure of the query protein(s). Unlike most other tools or servers, PROTEUS2 bundles signal peptide identification, transmembrane helix prediction, transmembrane β-strand prediction, secondary structure prediction (for soluble proteins) and homology modeling (i.e. 3D structure generation) into a single prediction pipeline. Using a combination of progressive multi-sequence alignment, structure-based mapping, hidden Markov models, multi-component neural nets and up-to-date databases of known secondary structure assignments, PROTEUS is able to achieve among the highest reported levels of predictive accuracy for signal peptides (Q2 = 94%), membrane spanning helices (Q2 = 87%) and secondary structure (Q3 score of 81.3%). PROTEUS2's homology modeling services also provide high quality 3D models that compare favorably with those generated by SWISS-MODEL and 3D JigSaw (within 0.2 Å RMSD). The average PROTEUS2 prediction takes ∼3 min per query sequence. The PROTEUS2 server along with source code for many of its modules is accessible a http://wishart.biology.ualberta.ca/proteus2
Recommended from our members
Evolutionary Dynamics of Vibrio cholerae O1 following a Single-Source Introduction to Haiti
ABSTRACT Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics
Effectiveness and Safety of the Switch from Remicade® to CT-P13 in Patients with Inflammatory Bowel Disease
[Background and Aims] To evaluate the clinical outcomes in patients with IBD after switching from Remicade® to CT-P13 in comparison with patients who maintain Remicade®.[Methods] Patients under Remicade® who were in clinical remission with standard dosage at study entry were included. The ‘switch cohort’ [SC] comprised patients who made the switch from Remicade® to CT-P13, and the ‘non-switch’ cohort [NC] patients remained under Remicade®.[Results] A total of 476 patients were included: 199 [42%] in the SC and 277 [58%] in the NC. The median follow-up was 18 months in the SC and 23 months in the NC [p < 0.01]. Twenty-four out of 277 patients relapsed in the NC; the incidence of relapse was 5% per patient-year. The cumulative incidence of relapse was 2% at 6 months and 10% at 24 months in this group. Thirty-eight out of 199 patients relapsed in the SC; the incidence rate of relapse was 14% per patient-year. The cumulative incidence of relapse was 5% at 6 months and 28% at 24 months. In the multivariate analysis, the switch to CT-P13 was associated with a higher risk of relapse (HR = 3.5, 95% confidence interval [CI] = 2–6). Thirteen percent of patients had adverse events in the NC, compared with 6% in the SC [p < 0.05].[Conclusions] Switching from Remicade® to CT-P13 might be associated with a higher risk of clinical relapse, although this fact was not supported in our study by an increase in objective markers of inflammation. The nocebo effect might have influenced this result. Switching from Remicade® to CT-P13 was safe.This research has been funded by grants from the Instituto de Salud Carlos III [PI13/00041 and FI17/00143]
Effectiveness and Safety of the Switch from Remicade® to CT-P13 in Patients with Inflammatory Bowel Disease
BACKGROUND AND AIMS: To evaluate the clinical outcomes in patients with IBD after switching from Remicade® to CT-P13 in comparison with patients who maintain Remicade®. METHODS: Patients under Remicade® who were in clinical remission with standard dosage at study entry were included. The ''switch cohort'' [SC] comprised patients who made the switch from Remicade® to CT-P13, and the ''non-switch'' cohort [NC] patients remained under Remicade®. RESULTS: A total of 476 patients were included: 199 [42%] in the SC and 277 [58%] in the NC. The median follow-up was 18 months in the SC and 23 months in the NC [p < 0.01]. Twenty-four out of 277 patients relapsed in the NC; the incidence of relapse was 5% per patient-year. The cumulative incidence of relapse was 2% at 6 months and 10% at 24 months in this group. Thirty-eight out of 199 patients relapsed in the SC; the incidence rate of relapse was 14% per patient-year. The cumulative incidence of relapse was 5% at 6 months and 28% at 24 months. In the multivariate analysis, the switch to CT-P13 was associated with a higher risk of relapse (HR = 3.5, 95% confidence interval [CI] = 2-6). Thirteen percent of patients had adverse events in the NC, compared with 6% in the SC [p < 0.05]. CONCLUSIONS: Switching from Remicade® to CT-P13 might be associated with a higher risk of clinical relapse, although this fact was not supported in our study by an increase in objective markers of inflammation. The nocebo effect might have influenced this result. Switching from Remicade® to CT-P13 was safe
Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. Gonorrhoeae strains
A curated Web-based user-friendly sequence typing tool based on antimicrobial resistance determinants in Neisseria gonorrhoeae was developed and is publicly accessible (https://ngstar.Canada.ca). The N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) molecular typing scheme uses the DNA sequences of 7 genes (penA, mtrR, porB, ponA, gyrA, parC, and 23S rRNA) associated with resistance to β-lactam antimicrobials, macrolides, or fluoroquinolones. NG-STAR uses the entire penA sequence, combining the historical nomenclature for penA types I to XXXVIII with novel nucleotide sequence designations; the full mtrR sequence and a portion of its promoter region; portions of ponA, porB, gyrA, and parC; and 23S rRNA sequences. NG-STAR grouped 768 isolates into 139 sequence types (STs) (n = 660) consisting of 29 clonal complexes (CCs) having a maximum of a single-locus variation, and 76 NG-STAR STs (n = 109) were identified as unrelated singletons. NG-STAR had a high Simpson's diversity index value of 96.5% (95% confidence interval [CI] = 0.959 to 0.969). The most common STs were NG-STAR ST-90 (n = 100; 13.0%), ST-42 and ST-91 (n = 45; 5.9%), ST-64 (n = 44; 5.72%), and ST-139 (n = 42; 5.5%). Decreased susceptibility to azithromycin was associated with NGSTAR ST-58, ST-61, ST-64, ST-79, ST-91, and ST-139 (n = 156; 92.3%); decreased susceptibility to cephalosporins was associated with NG-STAR ST-90, ST-91, and ST-97 (n = 162; 94.2%); and ciprofloxacin resistance was associated with NG-STAR ST-26, ST-90, ST-91, ST-97, ST-150, and ST-158 (n = 196; 98.0%). All isolates of NG-STAR ST- 42, ST-43, ST-63, ST-81, and ST-160 (n = 106) were susceptible to all four antimicrobials. The standardization of nomenclature associated with antimicrobial resistance determinants through an internationally available database will facilitate the monitoring of the global dissemination of antimicrobial-resistant N. gonorrhoeae strains
- …