659 research outputs found

    Phase separation processes in polymer solutions in relation to membrane formation

    Get PDF
    This review covers new experimental and theoretical physical research related to the formation of polymeric membranes by phase separation of a polymer solution, and to the morphology of these membranes. Two main phase separation processes for polymeric membrane formation are discussed: thermally induced phase separation and immersion precipitation. Special attention is paid to phase transitions like liquid-liquid demixing, crystallization, gelation, and vitrification, and their relation to membrane morphology. In addition, the mass transfer processes involved in immersion precipitation, and their influence on membrane morphology are discussed

    Metastable liquid-liquid and solid-liquid phase boundaries in polymer-solvent-nonsolvent systems

    Get PDF
    In general liquid-liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid-liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory-Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer-solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented

    A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water and polylactide-N-methyl pyrrolidone-water

    Get PDF
    The influence of liquid-liquid demixing, solid-liquid demixing, and vitrification on the membrane morphologies obtained from several polylactide-solvent-nonsolvent systems has been investigated. The polymers investigated were the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide (PDLLA). The solvent-nonsolvent systems used were dioxane-water, N-methyl pyrrolidone-water and dioxane-methanol. For each of these systems it was attempted to relate the membrane morphology to the ternary phase diagram at 25°C. It was demonstrated that for the amorphous poly-DL-lactide the intersection of a glass transition and a liquid-liquid miscibility gap in the phase diagram was a prerequisite for the formation of stable membrane structures. For the semicrystalline PLLA a wide variety of morphologies could be obtained ranging from cellular to spherulitical structures. For membrane-forming combinations that show delayed demixing, trends expected on the basis of phase diagrams were in reasonable agreement with the observed membrane morphologies. Only for the rapidly precipitating system PLLA-N-methyl pyrrolidone-water were structures due to liquid-liquid demixing obtained when structures due to solid-liquid demixing were expected. Probably, rapid precipitation conditions promote solid-liquid demixing over liquid-liquid demixing, because the activation energy necessary for liquid-liquid demixing is lower than that for crystallization

    Phase transitions during membrane formation of polylactides. I. A morphological study of membranes obtained from the system polylactide-chloroform-methanol

    Get PDF
    The influence of solid-liquid demixing, liquid-liquid demixing and vitrification on the morphology of polylactide membranes has been investigated. To study the effects of crystallization of polylactides on the membrane and morphology, polylactides of varying stereoregularity were used. The polymers applied were poly--lactide (PLLA) and copolymers with different molar ratios of -lactide and -lactide [poly-L95/D5-lactide (PLA95), poly-L80/D20-lactide (PLA80) and poly-L50/D50-lactide (PDLLA)]. Solutions of polylactides in chloroform cast on a glass plate were immersed in methanol. From solutions containing the slowly crystallizing PLA80 or uncrystallizable PDLLA porous membranes were obtained if the phase separated system was removed from the nonsolvent bath within a few hours after immersion. After longer equilibration times in methanol the structure collapsed. The swelling in the nonsolvent methanol was too high to allow stabilization of the liquid-liquid demixed structure by vitrification. Stable membranes were easily obtained with more rapidly crystallizing polymers like PLLA. Casting solutions with low PLLA concentrations gave membranes with a cellular morphology due to liquid-liquid demixing by nucleation and growth of a polymer poor phase. Crystallization only played a role in the fixation of the liquid-liquid demixed structure. At increasing PLLA concentrations the demixing sequence gradually reversed to crystallization followed by liquid-liquid demixing. In these cases membranes with porous spherulites or spherulites surrounded with a cellular layer were obtained

    Snellere afbraak organische stof op duinzandgrond

    Get PDF
    In 2008 en 2009 is bij PRI en PPO in Lisse onderzoek gedaan naar de afbraaksnelheid van organische stof op duinzandgronden. Op het veld en in het laboratorium is uitgebreid gemeten. Tussen de afbraak op diverse gronden blijken verschillen te bestaan. In dit artikel de stand van zaken na twee jaa

    Review of photoacoustic flow imaging: its current state and its promises

    Get PDF
    Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages

    Pulsed photoacoustic flow imaging with a handheld system

    Get PDF
    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging—ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole bloo

    Preventive care in the elderly: Studies on cardiovascular disease and hearing loss

    Get PDF
    One of the major achievements of medicine in this century is its contribution to the increase in life expectancy at birth. Nowadays. this is reflected in the growing Humber of older adults. Unfortunately, part of this group will spend old age in poor health. The consequences for older individuals, their care givers and the society at large. raises the question whether the occurrence of disease in later life can be postponed or even prevented. Prevention of disease can have different aims. Firstly. it call be directed at preventing premature death. Secondly. prevention can aim at reducing morbidity. If our preventive programmes are successful, morbidity may be compressed to a short period at the end of life. However, if preventive programmes also increase life expectancy, expansion of morbidity may occur. Thirdly, preventive efforts can try to improve functional status and maintain independence of older adults

    Cross-species extrapolation of chemical sensitivity

    Get PDF
    Ecosystems are usually populated by many species. Each of these species carries the potential to show a different sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described, ii) which predictors might be useful for explaining differences in species sensitivity, and iii) which statistical considerations are important. We argue that risk assessment can benefit most from modelling approaches when sensitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be paid to heterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences the reliability of the resulting models. Regarding which predictors are useful for explaining differences in species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapolation methods, describing the amount of mechanistic information the predictors contain, the amount of input data the models require, and the extent to which the different methods provide protection for ecological entities. We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the discussion of statistical considerations reveals that regardless of the method used, statistically significant models can be found, although the usefulness, applicability, and understanding of these models varies considerably. We therefore recommend publication of scientific code along with scientific studies to simultaneously clarify modelling choices and enable elaboration on existing work. In general, this review specifies the data requirements of different cross-species extrapolation methods, aiming to make regulators and publishers more aware that access to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, enabling their integration into the regulatory environment
    • …
    corecore