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• Methods for the cross-species extrapo-
lation of chemical sensitivity were
overviewed.

• Various descriptors of species sensitivity
were surveyed.

• Relatedness-, traits-, and genomic-
predictors added mechanistic informa-
tion.

• An integrated framework combining
approaches is suggested.

• Statistical considerations important
when extrapolating sensitivity are
described.
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Ecosystems are usually populated bymany species. Each of these species carries the potential to show a different
sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since
experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment
of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently
existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described,
ii) which predictorsmight be useful for explaining differences in species sensitivity, and iii) which statistical con-
siderations are important.We argue that risk assessment can benefitmost frommodelling approacheswhen sen-
sitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be
paid toheterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences
the reliability of the resultingmodels. Regardingwhich predictors are useful for explaining differences in species
sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapola-
tion methods, describing the amount of mechanistic information the predictors contain, the amount of input
data themodels require, and the extent towhich the differentmethods provide protection for ecological entities.
We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the
discussion of statistical considerations reveals that regardless of themethod used, statistically significant models
can be found, although the usefulness, applicability, and understanding of these models varies considerably. We
therefore recommend publication of scientific code along with scientific studies to simultaneously clarify model-
ling choices and enable elaboration on existing work. In general, this review specifies the data requirements of
different cross-species extrapolationmethods, aiming tomake regulators and publishersmore aware that access
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to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, en-
abling their integration into the regulatory environment.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

An ecosystem generally consists of a diverse species assemblage.
Each of the species present in such an assemblage has the potential to
showa different sensitivity towards each of themany different chemical
compounds that can be present in their environment (e.g. Biggs et al.,
2007; Clements and Rohr, 2009; Hickey and Clements, 1998). Ecological
risk assessment (ERA) is the process used to evaluate the impact of
chemicals on species assemblages by seeking the threshold concentra-
tion below which ecosystem structure and functioning experience no
adverse impacts (e.g. Suter, 2016). At the first tier of this assessment,
this threshold is often defined by combining results of single species
toxicity tests with assessment factors (e.g. Brock et al., 2006). These as-
sessment factors should reflect the uncertainty and variability related to
the extrapolation from a laboratory system (short-term, high exposure,
controlled environment, one species) to the natural environment (long-
term, low exposure, variable environment,multiple species, and species
interactions) (Brown et al., 2017). However, the assessment-factor
approach remains generalized, since one threshold value is applicable
to all assemblages within an ecosystem, irrespective of the variation
in their species composition over space and time. This limits the speci-
ficity of the ERA. In contrast, existing higher tier approaches, such as
mesocosm studies, do consider species assemblages rather than single
species. However, performing multiple mesocosm experiments to ac-
count for seasonal and spatial variation would be too time and capital
intensive (Van den Brink, 2008). Predictive methodologies extrapolate
existing toxicity data to untested organisms. By predicting sensitivity
values for a wide range of species, these methods can account for the
part of the spatial-temporal variation in species sensitivity that is due
to differences in species assemblages within and between sites (e.g.
Malaj et al., 2016; Raimondo and Barron, 2019; Van den Berg et al.,
2019). However, although several predictive methods have been devel-
oped over the last decades, a clear overview of which extrapolation
methodologies are currently available, along with a description of
their considerations, assumptions, merits, and pitfalls, is still lacking.

Since the need to address spatial-temporal variation requires the
sensitivity of a species assemblage to be calculated rather than the
sensitivity of a single species, we focus this review on methods

extrapolating the sensitivity of multiple species towards one chemical
or mode of action (MOA), thereby excluding methodologies extrapolat-
ing sensitivity of one species to multiple chemicals (e.g. Quantitative-
Structure-Activity Relationships (QSARs), Donkin, 2009). Interspecies
Correlation Estimation (ICE) is one of the earliest methods used to
extrapolate toxicity data to untested species (Janardan et al., 1984;
Mayer and Ellersieck, 1986). A software program to predict acute effects
on aquatic and terrestrial species using ICE was developed in the 2000s
(Asfaw et al., 2003) and a web-based model is available as Web-ICE
(Raimondo et al., 2015). The method has gained popularity for the der-
ivation of water quality criteria (e.g. Dyer et al., 2008; Feng et al., 2013),
for example within the WFD (Water Framework Directive, European
Commission, 2000).

To understand interspecific differences in species sensitivity towards
chemical exposure, it is useful to divide sensitivity into two processes:
toxicokinetics (TK) and toxicodynamics (TD) (EFSA PPR Panel (Panel
on Plant Protection Products and their Residues) et al., 2018). TK pro-
cesses describe the uptake, biotransformation and elimination of a
chemical by a given organism, whilst TD processes are related to the
damage, internal recovery and toxicity thresholds inside the organism
after uptake of the chemical. The mechanistic basis of cross-species
extrapolation is related to interspecific differences in TKTD processes.
Interspecific differences in TKTD processes can be investigated by
describing the combined effect of TK and TD processes simultaneously,
or by using more specific predictors that split TK and TD into separate
processes. In this review, we illustrate these processes in more detail,
explain how they can be used as a more accurate description of species
sensitivity, and clarify how different predictors can be used to describe
different components of interspecific variation in sensitivity to chemical
exposure.

Themain research question of this review is ‘How can we extrapolate

species sensitivity?’. However, a direct answer to this question does not
exist, and in order to understand and compare cross-species extrapola-
tion methods, it is necessary to study the three elements that make up
predictive models separately, namely: i) the dependent variable (y),
ii) the independent variable(s) (x), and iii) the function used to deter-
mine the relationship between the independent variable(s) and the de-
pendent variable (f, Fig. 1). Concerning the cross-species extrapolation
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methods reviewed here, the dependent variable is the sensitivity of an
untested species to a chemical. Therefore, the first sub-question this
review tries to answer is ‘How can we describe species sensitivity?’

(Q1). Although there is a proven distinction between true sensitivity
and sensitivity as measured by short-term, laboratory experiments
(Craig, 2013), it remains unambiguous that true sensitivity can only
be inferred from measured sensitivity. Therefore, we will continue to
use the term sensitivity to refer to measured sensitivity, of which we
are aware that it is a measure relative to the protocol under which it
was determined. The second element making up predictive models is
the independent variable(s), or in other words, the predictors required
to explain species sensitivity. The second sub-question this review tries
to answer is therefore ‘Which independent variables are useful for

explaining differences in species sensitivity?’ (Q2). Ultimately, the last el-
ement concerns the statistical considerations that are of importance
when connecting the independent and dependent variables together,
or in other words, an answer to the question ‘Which statistical consider-

ations are important when extrapolating species sensitivity?’ (Q3). Overall,
we aim to identify the range of approaches available for each of the
three elements mentioned, along with a description of the consider-
ations and assumptions they make, and to provide guidance on how
the optimal combination of these elements can be combined in a con-
ceptual framework. Since our background and expertise lies primarily
in the field of aquatic ecotoxicology, most examples mentioned in this
review will refer to the aquatic ecosystem. However, the general con-
cepts and theories described and discussed can be applied to any
cross-species extrapolation effort.

2. How can we describe species sensitivity?

Thefirst element concerns how sensitivity is described. This descrip-
tion is primarily dependent on choices made in the selection of the
input data, since this limits the boundaries of the model. For example,
if the input data exclusively contain data on mortality effects, the
resulting model will only be capable of predicting effects on mortality.
We will discuss important selection criteria in Sections 2.1–2.4. Addi-
tionally, when comparing the performance of differentmodels to deter-
mine which model is most suitable for answering a specific research
question, it is important to consider whether data have been grouped
or not (e.g. over chemicals or taxa). This will be discussed inmore detail
in Section 2.5.

2.1. Effects

Effects onmortality aremost frequently incorporated into predictive
models (Table 1). This is primarily determined by data availability.More

than 40% of all aquatic toxicity tests in the ECOTOX database (U.S.
Environmental Protection Agency, 2019) report effects on mortality,
making it the most frequently studied effect on aquatic organisms in
this database. However, mortality is sometimes not the most important
effect to consider, depending on the mode of action of the chemical
under study. Additionally, the data used to derive standard endpoints
(e.g. LC50 values) can be exploited further to obtain amoremechanistic
understanding of sensitivity, for instance, by means of TKTD models.

Effects other than mortality might be ecologically more relevant, or
more relevant due to the mode of action of the chemical. Reproduction,
for instance, is an indisputable element of population sustainability (see
Gleason and Nacci, 2001; for an example with fatheadminnow, and see
Segner, 2011 for extensive background material). Thus, processes
influencing reproductive success might be a better indicator of effects
at higher levels of biological organization (e.g. offspring fitness,
Hammers-Wirtz and Ratte, 2000). Energy allocation has been suggested
as a means to link various levels of biological organization together
(Calow and Sibly, 1990), since the energy available for reproduction
and other functions depends on the availability of food sources and on
the ability of an organism to exploit those (Amiard-Triquet, 2009).
Thus, effects on feeding behaviour and reproduction can directly be con-
nected to effects at population level by means of energy allocation
modelling (Calow and Sibly, 1990), and might provide a closer approx-
imation of sensitivity compared to when effects on mortality are used.
More recently, energy allocation modelling has obtained renewed re-
search interest under the acronym DEBtox (dynamic energy budget
for toxicants), promoting simple generic models of animal life history
(Baas et al., 2018; Jager et al., 2013; Kooijman, 2020).

Besides incorporatingmore ecologically relevantmeasurement end-
points, it is also possible to extract more information from existing data
by means of TKTD models. For instance, the General Unified Threshold
model of Survival (GUTS) is a TKTD framework that has been developed
to obtain more mechanistic understanding frommortality or immobili-
zation data by dynamically describing the process of uptake, elimina-
tion, recovery, and survival (Jager et al., 2011). Since GUTS parameters
provide a more accurate description of processes determining species
sensitivity, additional mechanistic understanding of differences in spe-
cies sensitivity can be obtained by comparing calibrated GUTS parame-
ter values across species, instead of standard sensitivity endpoints
(Rubach et al., 2011; Rubach et al., 2012). To be able to fit GUTSmodels,
however, data on effects atmultiple time points are required. Collection
of these data is already obligatory under most standard test protocols
(e.g. OECD, 2019). However, public access to these data remains diffi-
cult, either due to the requirements of journals where these studies
are published, or, in case of regulatory studies, the rules of the regula-
tory frameworks. These difficulties can easily be overcomeby a commit-
ment to publish the raw data of experiments along with summary
statistics like LC50 values, preferably open access.

2.2. Exposure duration

Typically, acute toxicity tests with an exposure duration between 24
and 96 h are used for predictive modelling (Table 1). Again, this is pri-
marily determined by data availability, since>50% of all aquatic toxicity
test data available in the ECOTOX database concern tests with an expo-
sure duration of up to 96 h (U.S. Environmental Protection Agency,
2019). Although expanding the exposure duration range may be bene-
ficial for obtaining an adequately-sized dataset, it potentially compro-
mises the integrity of the model and should be avoided if possible. For
instance, we are likely to find less (fewer or smaller) effects after a
24 h continuous exposure than after a 96 h continuous exposure, be-
cause it takes time for a chemical to reach equilibrium between the ex-
posure concentration and the concentration inside the organism. This
difference is likely to become larger when the comparison concerns
tests performed with different species, i.e. due to intraspecific differ-
ences in size and other traits influencing the uptake and elimination of

Fig. 1. Schematic overview of the elements making up predictive models. The Qs indicate
the elements covered by sub-question 1, 2, and 3 posed in this review.
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the chemical (e.g. Wiberg-Larsen et al., 2016). The exposure duration
required to reach equilibrium is not only species dependent, but also
depends on the physical-chemical properties of the compound, as is
well-known from QSAR modelling (Cherkasov et al., 2014).

Besides running experiments long enough to ascertain that internal
and external concentrations are in equilibrium, internal tissue concen-
trations could be measured and reported together with external expo-
sure concentration. Several studies have demonstrated that the
internal chemical concentration describes toxic effects more closely
than the external chemical concentration (Friant and Henry, 1985;
McCarty et al., 2011). Focussing on internal chemical concentration
would by-pass TK processes, since uptake and elimination processes
are redundant when internal concentrations are known, and would en-
able us to compare differences in species sensitivity originating from
internal processes only (TD). Alternatively, a TKTD model like GUTS
could be employed,which results in toxicitymeasures that are indepen-
dent of exposure time (Jager et al., 2006).

2.3. Additional selection criteria

Imposing additional selection criteria on experimental conditions
(e.g. pH, temperature, conductivity) can be useful for improving data
homogeneity and hence data quality. Heavymetal toxicity, for example,
has been reported to vary greatly according to the physicochemical
characteristics of the exposed water (Gerhardt, 1993; Pascoe et al.,

1986). The biotic ligand model has been developed to examine the bio-
availability of heavy metals under different exposure circumstances,
and additionally explains how abiotic conditions influence the affinity
of metals to accumulate on the surface of aquatic organisms (Erickson,
2013). Similar models, normalization factors, or additional selection
criteria, can be employed for other compound groups when necessary.
Whether and which physicochemical properties should be taken into
consideration when determining toxicity depends on the specific char-
acteristics of the chemical group under study.

There are many other variables that may be sources of variation
in species sensitivity. Consider, for instance, the size (Poteat and
Buchwalter, 2014), sex (McClellan-Green et al., 2007), and life stage
(van der Lee et al., 2020) of the individuals used in the toxicity test.
Although these sources of variation are well-known, setting additional
selection criteria on them is nearly impossible, since reporting on
these factors is not always, or has not always been, common practise
under standard guidelines. Additionally, standard guidelines take a lot
of time and effort to develop, and are therefore only available for a lim-
ited range of species, making the use of selection criteria on a wide
range of species difficult. Similar as before, whether and which of
these variables should be taken into consideration when determining
toxicity depends on the compound and taxonomic group under study,
since the importance of these variables depends on the combination
of both. For instance, sex dependent responses towards endocrine
disrupting compounds may be common among fish (Orlando and

Table 1

Overview of modelling decisions made in the construction of interspecies correlation (IC), relatedness-based (RB), taxonomy-based (TB), and genomic-based (GB) models.a

Effects (endpoint) Exposure
duration

Taxa Transformation or
normalization factor

Unit of exposure
conc.

Chemicals included
per model

Grouping across
taxa

Statistical
method

Reference(s)

IC Mortality (LC50),
Immobilization
(EC50)

48 to
96 h

Fish, algae,
birds,
mammals,
and aquatic
invertebrates

logLC50 μg/L >1 chemical or MOA Species Linear
regression

(e.g. Bejarano and
Barron, 2014; Brill
et al., 2016; Dyer
et al., 2006; Feng
et al., 2013)

RB Mortality (LC50),
Immobilization
(EC50)

48 to
96 h

Fish, and
aquatic
invertebrates

logLC50 μg/L 1 chemical Species Bayesian
regression

(Craig, 2013)

Mortality (LC50) 96 h Amphibians,
fish, and
aquatic
invertebrates

logLC50 μmol/L > 1 MOA Species Bilinear
regression

(Guénard et al.,
2014)

Mortality (LC50),
Immobilization
(EC50)

24 to
96 h

Aquatic
invertebrates

logLC50 μg/L > 1 heavy metal Species Bilinear
regression

(Malaj et al., 2016)

Population growth
(EC50)

96 h Algae
ffiffiffiffiffiffiffiffiffiffiffi

LC50
p

μg/L 1 chemical Species Multivariate
analysis

(Larras et al., 2014)

TB Mortality (LC50),
Immobilization
(EC50)

24 to
96 h

Aquatic
invertebrates

;log ;LC50−μ

σ
μg/L 1 MOA Family Linear

regression
(Rubach et al., 2010)

Mortality (LC50),
Immobilization
(EC50)

24 to
96 h

Aquatic
invertebrates

; log ;

1
LC50 ∗F

b mol/L 1 chemical Genus, species Genetic
algorithm

(Ippolito et al., 2012)

Mortality (LC50),
Immobilization
(EC50), Uptake
(kin), Elimination
(kout)

48 h Aquatic
invertebrates

logLC50 μg/L 1 chemical Species Linear
regression

(Rubach et al., 2012)

Mortality (LC50),
Immobilization
(EC50)

24 to
96 h

Aquatic
invertebrates

;log ;LC50−μ

σ
μg/L 1 MOA Order, family,

genus
Linear
regression

(Rico and Van den
Brink, 2015)

Mortality (LC50) 24 to
96 h

Aquatic
invertebrates

;log ;LC50−μ

σ
mol/L 1 MOA Genus Linear

regression
(Van den Berg et al.,
2019)

GB Mortality (LC50) 48 and
96 h

Amphibians,
fish, and
aquatic
invertebrates

logLC50 μg/L 1 chemical Species Linear
regression

(LaLone et al., 2013)

Mortality (LD50) – Birds logLD50 nmoles/kg 3 chemicals Species Linear
regression

(Farmahin et al.,
2012)

a This table is intended to be illustrative, not exhaustive, due to space constraints.
b Normalization factor was used to normalize the data according to exposure duration (Ippolito et al., 2012).
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Guillette, 2007), whilst they may be absent for certain groups of inver-
tebrates due to the large complexity and variation in endocrine systems
among species (Janer and Porte, 2007).

2.4. Units

A final, but equally important choice in the description of sensitivity
data is the unit in which sensitivity is expressed. This is specifically im-
portant when comparing species sensitivity across chemicals, which is
sometimes necessary when data availability is restricted (discussed in
Section 2.5). Although μg l−1 is still the most frequently used unit in
aquatic toxicity tests (almost 50% of all aquatic tests available in the
ECOTOX database, U.S. Environmental Protection Agency, 2019, and
see Table 1), it is not the most suitable one. It is frequently overlooked
that chemical sensitivity is primarily related to molecular activity, and
that the use of molar units makes molecule-to-molecule activity com-
parisons possible. For baseline toxicants exhibiting a non-polar narcosis
MOA, the concentration atwhichmortality occurswill be close to equiv-
alent for all species when internal molar concentrations are used
(Escher and Hermens, 2002; Wezel and Opperhuizen, 1995), reducing
differences in species sensitivity to TK processes only. To overcome
the problems of tests expressed in weight units, attaching an accurate
molar mass database (e.g. EPIsuite, U.S. Environmental Protection
Agency, 2018) can help with converting mass units to molar units.

2.5. Grouping data, and its effects on explained variance

When data are limited, which is often the case, there is the possibil-
ity of grouping data (e.g. across chemicals or taxa) to obtain an ade-
quately sized dataset suitable for modelling purposes.

Classifying chemicals according to their MOA is considered useful,
because it provides an organizing scheme using an intermediate level
of complexity between molecular mechanisms and physiological or or-
ganismal outcomes (Carriger et al., 2016). The rationale for using MOA
classification for cross-species extrapolation is that these molecular
mechanisms are conserved among biological entities (Escher and
Hermens, 2002). However, as in any grouping, usingMOA as a grouping
variable also introduces variation and errors. The assigned MOA may
vary, for instance, between species or life stage depending on the avail-
ability of target sites (e.g. in the case of photosynthetic inhibitors,
Nendza and Muller, 2000), or between classification scheme used (see
Kienzler et al., 2017 for differences in MOA classification according to
the approach used). Therefore,MOA grouping only represents a suitable
option when it is used with caution, for instance, by restricting the tax-
onomic range of the model to avoid interspecific variation in MOA, or
when there is strong evidence that theMOA is applicable across the spe-
cies in question (e.g. for baseline narcosis, for which there is strong
evidence that the critical body residue for acute lethality in aquatic
organisms has a very small range, van Wezel et al., 1995).

Similar to using MOA to group across chemicals, higher taxonomic
ranks (e.g. family, order) can be used to group across taxa, and may
also be useful for reducing data gaps. Grouping at higher taxonomic
ranks has the advantage of reducing bias due to extreme values and
spurious data. However, potentially important differences in species
sensitivity might be lost by summarising the sensitivity of several spe-
cies at, for example, family level (Buchwalter et al., 2008; Ippolito
et al., 2012), and this trade-off should be carefully considered for the
chemical-taxa combination under study.

Whether and how input data are grouped needs to be considered
when comparing the performance (e.g. the adjusted R2, or the cross-
validation error) of different models. It is crucial to keep in mind that
the variation associated with the grouping that goes into the model, is
directly related to the variation related to the predictions that come
out of themodel (Schultz and Cronin, 2003). Disregarding the variation
in input values can result in an overly optimistic view onmodel perfor-
mance. Similarly, when comparing the performance of differentmodels,

it is important to consider howmuch variation themodel explains, since
this largely depends on the number of chemicals considered in the
model. For instance, the most complex model of Guénard et al. (2014)
explained 80% of the variation in the sensitivity of 25 species towards
five compounds, whilst a related model of Van den Berg et al. (2019,
both models include AChE inhibition as MOA) explained only 41% of
the variation in the sensitivity of 32 genera towards 33 compounds.
This large difference in model performance can partially be explained
by the fact that the five compounds of Guénard et al. included three
MOAs, whilst the 33 compounds of Van den Berg et al. included only
oneMOA, thereby resulting in a large difference in the absolute amount
of variation that each model explains.

3.Which independent variables are useful for explaining differences

in species sensitivity?

We divide possible sensitivity predictors into four groups based on
the type of mechanistic information that they contain: interspecies-
correlation (IC), relatedness-based (RB), trait-based (TB), and genomic-
based (GB). Here, we first give an overview of the general concept
behind each sub-group (Section 3.1), followed by a discussion of the
merits and pitfalls associated with each of them (Section 3.2, Table 2),
and close with a description on how the different predictor groups can
be combined in a conceptual framework (Section 3.3).

3.1. Overview of methods

Interspecies-correlation (IC) models are log-linear least-squares
regressions of the acute toxicity (E/LC50) of chemicals measured in
two species (e.g. Awkerman et al., 2008; Awkerman et al., 2014; Dyer
et al., 2006; Dyer et al., 2008; Raimondo et al., 2007). IC models aim at
predicting the acute toxicity of a chemical to untested species
(predicted species) using the known acute toxicity of this chemical to
tested species (surrogate species). IC models have been used to predict
chemical toxicity for algae (e.g. Brill et al., 2016), aquatic invertebrates
and vertebrates (e.g. Awkerman et al., 2014), terrestrial birds (e.g.
Raimondo et al., 2007) and mammals (e.g. Awkerman et al., 2009),
and have proven to be protective for rare and endangered species
(Willming et al., 2016). However, not all predictions made by this
kind of model are reliable. Reliable prediction results are those that
are derived from models that have a low mean square error, narrow
confidence intervals, a high cross-validation success rate, a high R2

value, and are predicting the sensitivity of closely related taxa (e.g. be-
longing to the same order, Raimondo and Barron, 2019; Raimondo
et al., 2007; Raimondo et al., 2010b).

Relatedness-based (RB)models use the extent of evolutionary relat-
edness between organisms as a proxy for the similarity in their response
to chemical stressors (e.g. Craig, 2013; Guénard et al., 2014; Malaj et al.,
2016). The underlying principle of these models is that closely related
species exhibit high correlation of sensitivity to chemicals, such that
closely related species tend to have similar sensitivity, divergence of
sensitivity, and uncertainty. These three aspects subsequently increase
for more distantly related species. The correlation of the sensitivity of
species with a known relatedness can be used to make extrapolations
from species whose sensitivity is known, to closely related untested
species. The strength of this correlation decreases as the two species
are more distantly related to the point where species that belong to
the same higher taxonomic rank exhibit no correlation of sensitivity.
Most RB models use taxonomy to predict the sensitivity of untested
species (e.g. Craig, 2013), although other relatedness metrics, such as
phylogenetics, have also been used (Guénard et al., 2014; Malaj et al.,
2016, Table 1).

Trait-based (TB) models use physiological, morphological and eco-
logical characteristics of a species to describe its sensitivity towards
chemical stressors (e.g. Rubach et al., 2010). Several traits of organisms
are known to directly relate to organism sensitivity (e.g. larger organisms
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tend to be more tolerant of toxicants) and therefore the relationships
between these traits and sensitivity can be used to predict the sensitivity
of untested species with known traits. Currently existing trait databases
(e.g. Usseglio-Polatera et al., 2000), primarily describe visible, external
traits (e.g. size, shape). Therefore, TB models are most appropriate for
describing TK related processes, e.g. by considering feeding mode or
mode of respiration (Rubach et al., 2012; Van den Berg et al., 2019).
Other traits that could help describe internal TD processes (e.g. presence
of target receptors) are available, but have so far only been described for
a small number of species (see Table 2 in Rubach et al., 2011 for an over-
view of the availability and linkage of potential toxicodynamic traits).

Genomic-based (GB) models use the relationship between gene ex-
pression and biological function as a way to determine the sensitivity of
an organism towards specific chemical stressors (Fedorenkova et al.,
2010; Snape et al., 2004). Essentially, GB models directly link the genetic
code underlying the molecules and pathways of chemical sensitivity to
the sensitivity of the organism itself. Therefore, GBmethods directly com-
pare the differences between how organisms respond to chemicals inter-
nally, rather than the extent of relatedness in RB methods or the traits
(which may have multiple genetic or phenotypic origins) of TB models
that both partially relate to organism sensitivity. GB models focus on
gene and protein expression, integrating transcriptomics (identification
of mRNA from actively transcribed genes), proteomics (identification of
proteins in a biological sample), andmetabolomics (identification of me-
tabolites in a biological sample) into ecotoxicology (Pennie et al., 2001). It
is widely recognized that changes in gene expression have the potential
to serve as early warning indicators for environmental effects and as use-
ful biomarkers for chemical exposure (Pennie et al., 2001; Poynton et al.,
2014), because they can be detected at low concentrations of chemicals
and occur well before any morphological or reproductive effects become
visible (e.g. Klaper and Thomas, 2004). However, how effects found at a
molecular level should be extrapolated to a higher biological level rele-
vant to risk assessment is an area of active research, for which adverse
outcome pathways (AOPs) have been suggested as a suitable framework
(Ankley et al., 2010). An AOP is a conceptual construct of a sequence of
events that starts with a molecular initiating event, spans multiple levels
of biological organization, and ends with an adverse outcome on end-
pointsmeaningful to risk assessment (e.g. survival, reproduction).We re-
alize that the boundary between a phylogenetic RB approach and a GB
approach can be vague. To avoid ambiguity, we consider an analysis of
the sequence similarity in a molecular target a GB approach (because
this confirms a deeper understanding of the toxicity process), whilst an
analysis of the sequence similarity in the whole genome or in genetic
markers frequently used in phylogenetic analysis (e.g. COI, 18S) is consid-
ered an RB approach (Table 1).

3.2. Comparison of methods

3.2.1. Mechanistic explanation

Raimondo et al. (2010a) state that taxonomic relatedness is the un-
derlyingmechanistic explanation for IC models. However, IC models do
not incorporate any phylogenetic or taxonomic predictors, and only
take taxonomic distance into account when screening for reliable pre-
diction results (Raimondo and Barron, 2019). Similarly, relatedness be-
tween chemicals can be considered the mechanistic explanation of IC
models, since these models always include the response of species to
multiple chemicals. Indeed, the fact that IC models work well when
enough data are available, is likely due to the simultaneous explanation
of the variation in sensitivity related to different chemicals and different
species. Nevertheless, the lack of either taxonomic or physicochemical
predictors raises the possibility of over-fitting the correlation model to
the training data, resulting in inaccurate predictions when models are
applied beyond the limits of the training data (Johnson and Omland,
2004). In the case of ICmodels, any chemical untested on the target spe-
cies lies outside the limits of the training data.

RB models use relatedness as the mechanistic explanation of sensi-
tivity. Relatedness itself does not explain differences in sensitivity, but
is used as a proxy for similarity in species response to chemicals
(Craig, 2013; Guénard et al., 2014; Malaj et al., 2016), since closely re-
lated taxa tend to exhibit similar sensitivity due to shared sensitivity-
influencing traits (e.g. size and target receptor, Blomberg et al., 2003).
The shared distance from a common ancestor results in closely-related
genetic patterns, which leads to a similar biochemistry and phenotype,
and therefore, to a shared susceptibility to certain MOAs.

TB models incorporate mechanistic explanations of sensitivity aris-
ing from differences in phenotypic or ecological characteristics of
species. One TB approach focusing on aquatic invertebrates has, for in-
stance, demonstrated that the uptake rate of chemicals can to a large ex-
tent be explained by the lipid content of an organism,whilst elimination
rates are negatively correlatedwith the degree of sclerotization (Rubach
et al., 2012). Depending on the taxonomic group under study, mecha-
nistic hypotheses between traits and chemical susceptibility have
been established to a greater or lesser extent. See Table 2 in Rubach
et al. (2011) for an overview of the availability of a wide range of traits
for algae, fish, aquatic plants, birds, mammals, and aquatic inverte-
brates, and the strength of the trait-process relationship (i.e. plausible
but not proven, some evidence for some taxa, relationship available
for several taxa).

GBmodels have the potential to contain a comprehensivemechanis-
tic explanation of sensitivity to chemical exposure. However, in contrast
to TBmodels, GBmodels often describe complex biochemical pathways

Table 2

Brief description of the four groups of cross-species extrapolation approaches discussed in this review, alongwith information on their mechanistic explanation, data demand, and level of
protection for ecological entities.

Main principle Mechanistic explanation Data demand Protection of ecological entities

IC Correlation between the
responses of two species
(surrogate and predicted species)
to a range of chemicals

Absent Toxicity data on multiple
chemicals (both on the
surrogate and predicted
species)

Only the sensitivity of well-studied species can be
predicted, and so far no examples of extrapolations to
higher levels of biological organization exist.

RB Evolutionary relatedness Evolutionary related species exhibit similar
sensitivity due to overlap in
sensitivity-influencing traits and
closely-related genetic patterns

Toxicity data, and data on
taxonomic relatedness (i.e. a
taxonomic or phylogenetic
classification)

The sensitivity of real species assemblages can be
predicted. Indirect effects of chemicals can only be
predicted when chemical effects are restricted within
taxonomic or phylogenetic groups carrying specific
functions.

TB Morphological, physiological and
ecological relatedness

Differences in sensitivity-influencing
morphological, physiological, or ecological
characteristics of a species

Toxicity data, traits data,
taxonomy data (to match
toxicity and traits)

The sensitivity of real species assemblages can be
predicted. Indirect effects of chemicals can be
predicted based on what might happen to specific
functional groups

GB Similarity in biogeochemical
pathways

Differences in sensitivity-influencing
biogeochemical pathways

Toxicity data, adverse outcome
pathway, data on one or more
aspects of the biogeochemical
pathway

Only the sensitivity of well-studied species can be
predicted, and no examples exist yet on the
extrapolation to higher levels of biological
organization.
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that are difficult to understand and to test experimentally (see Forbes
et al., 2006 for an overview of the limitations of biomarkers for assessing
population level effects). Even if a complete AOP is available, capturing
all possible molecular initiating events and/or key events that could be
generated by the compound under study, uncertainties in the quantifi-
cation of one of the intermediate steps required to infer organism level
effects from molecular target sequence similarity might prevent a
model from performing well, i.e. have a large predictive power. This is
largely because these intermediate steps (e.g. related to transcripto-
mics, proteomics) heavily influence the eventual outcome of themolec-
ular effect. LaLone et al. (2013) found, for example, that the correlation
between empirical acute toxicity data and the percent similarity in the
molecular target analysis is not very strong (R2 = 0.49, p-value =
0.121). They argue that to fully understand chemical susceptibility it is
necessary to further assess sequence and even structural information
beyond the level of the primary or secondary protein structure
(LaLone et al., 2013).

3.2.2. Data demand

ICmodels only require data on toxicity (e.g. EC50, LC50),which can be
obtained from public databases such as the ECOTOX Knowledgebase
(U.S. Environmental Protection Agency, 2019). However, the require-
ment that paired toxicity data (i.e. surrogate and predicted species)
must be available for at least three chemicals in order to produce the
correlation, restricts data availability (Raimondo et al., 2010a). Never-
theless, the latest IC models for aquatic animals contain >8500 toxicity
values covering 316 species and 1499 chemicals (Raimondo et al.,
2015). However, the taxonomic coverage of these models is restricted,
with >60% of all the models available in WebICE extrapolating from
one fish species to another (Raimondo et al., 2015), and of another
26%, either the surrogate or the predicted species is a fish.

As the predictive methods of RB models are based on relatedness,
rather than on correlations of sensitivity to chemicals, data on toxicity
must be complemented with data on relatedness. Taxonomic classifica-
tions for use in taxonomic RB models are readily available for any
described species in publicly available databases (e.g. the taxonomy da-
tabase from the National Center for Biotechnology Information,
Federhen, 2011; or the Integrated Taxonomic Information System,
ITIS, 2019). A phylogenetic RB model requires the genetic sequencing
of a species, and coverage of phylogenies is currently still clade depen-
dent. For instance, sequencing efforts in eukaryotic genomics are
strongly biased towards multicellular organisms and their parasites
(del Campo et al., 2014), and large projects are available to sequence
vertebrate genomes (e.g. the Genome 10 K project, Koepfli et al.,
2015). Genomic projects on algae and invertebrates remain limited,
however, restricting the use of phylogeny-based RB models to data-
rich clades such as fish. To ensure a good performance of RB models, a
taxonomically or phylogenetically diverse toxicity dataset is required,
because the correlation of sensitivity decreaseswith decreasing related-
ness (Craig, 2013).

The data demand of TB models depends on the traits to be included
in themodel, aswell as the taxonomic group forwhich themodel is con-
structed. For invertebrates, traits like size and mode of respiration (e.g.
having gills or not) are readily available in literature, or can otherwise
easily be recorded. Data onmore specific traits, like lipid content or tar-
get site distribution, require more effort to measure, and are therefore
less available in literature (see Table 2 in Rubach et al., 2011). The
study of Van den Berg et al. (2019) showed that when a wide range of
traits were included in the construction of invertebrate TB models, the
modelling effort was primarily limited by a shortage of traits data
(loss of 56% of the species for which toxicity data are available).
However, only one trait database was used in their study (Usseglio-
Polatera et al., 2000), whilstmore trait databases are available for inver-
tebrates (Hébert et al., 2016; Poff et al., 2006; Schäfer et al., 2011). For
fish, awide range of traits are available, distributed over several trait da-
tabases (Frimpong and Angermeier, 2009; Froese and Pauly, 2000;

Lamouroux et al., 2002) and covering a large part of the taxonomic di-
versity of fish. For algae we are aware of two traits databases currently
available (Lange et al., 2016; Reynolds et al., 2002), but have to ac-
knowledge that they are likely to have the lowest taxonomic coverage
out of the three standard organism groups discussed here (inverte-
brates, fish, algae), due to the large biodiversity of this group. Besides
data on traits, TB models require data on taxonomy to match the traits
with the toxicity data. The taxonomic nomenclature used in the traits
database has to exactly match the one used in the toxicity database. If
this is not the case, the taxonomy of both the traits and the toxicity
database has to be standardized by means of an external taxonomy
database. Access to taxonomic data has already been described under
RB models.

GBmodels are the most data demanding, because they require peer-
reviewed AOPs, based on validated biomarkers. Currently, 274 AOPs
have been described in the AOP wiki in total covering 521 stressors (in-
cluding chemicals, environmental factors), although the OECD status of
the majority of them remains ‘under development’ (https://aopwiki.
org/, accessed on the 25th of January 2020), and taxonomic coverage
of these models remains limited. However, powerful advances in ge-
nome sequencing technology, informatics, automation, and artificial in-
telligence are assisting researchers in understanding species differences
to amore detailed level (Lewin et al., 2018), and can be expected to lead
to a significant increase in the development of AOPs. Promising new
techniques, e.g. in vitro cell-lines (Eisner et al., 2019) or enzymatic
markers (Arini et al., 2017), are being developed and carry the potential
to replace currently used in-vivo concentration-response curveswith in-
vitro concentration-response curves (see, for instance, Fig. 3 in Zhang
et al., 2018). However, these methods are time-, and cost-intensive,
and are frequently incomparable due to inconsistent bioinformatic
methods for data filtering, concentration-responsemodelling and quan-
titative characterization of genes and pathways (Zhang et al., 2018).

3.2.3. Protection of ecological entities

The main objective of all cross-species extrapolation methods is to
get an accurate view on the variation in species sensitivity that exists
in the real world. Indeed, all methods presented in this review attempt
to add realism to ERA by filling in data gaps. However, themethods stud-
ied in this review vary in two importantways: i) in theway they are able
to consider real species assemblages, and ii) in the way that they can be
used to extrapolate effects to higher levels of biological organization (e.g.
population, community or ecosystem level). Therefore, the fourmethods
differ in the way they provide protection for ecological entities.

Researchers have known for a long time that real species assem-
blages vary through time (Murphy, 1978) and space (Vannote et al.,
1980). Although we will likely never be able to understand this varia-
tion in its entirety, we can reduce uncertainty in ERA by predicting the
sensitivity of representative species assemblages. RB and TB methods
have this potential, since both methods can predict the sensitivity of
species that have never undergone toxicity testing before, provided
that data requirements of the specieswhose sensitivity youwant to pre-
dict are available or can be collected. This contrasts with IC models,
which require sufficient toxicity data to be available for the taxon
whose sensitivity we want to predict (Section 3.2.2), and then still
might be overfitted to the training data due to the absence of mechanis-
tic relationships. GB models require, at least, to have the part of the
genome sequenced that is associated with the key molecular initiating
event(s) (LaLone et al., 2013). This is to ensure that divergence of geno-
mic sequences linked to themolecular targets of a chemical can be asso-
ciatedwith differences in the sensitivity between species. Consequently,
extensive collection of genomic data and understanding of the
chemical's toxicity pathway is required to produce a robust GB model.
Therefore, IC and GB models are only able to predict the sensitivity of
well-studied species.

All fourmethods have the potential to be used for the construction of
species sensitivity distributions (SSDs), a statistical tool considered
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more protective of ecological entities than single measurements of sen-
sitivity, since they allow only a defined fraction of species present in a
species assemblage to be affected (Kooijman, 1987). Again, due to the
restrictions in the underlying data, IC and GB models assume standard
species assemblages in their SSDs, whilst RB and TB models can also
be applied to representative species assemblages. RB approaches have
as advantage over TB approaches that data on relatedness is usually
more abundant than data on traits, allowing sensitivity to be predicted
for a wider range of species. For this reason, RB models can be used to
develop spatially-defined protection criteria, whereas TB models can
extrapolate found relationships towards assemblages with the same
trait profile, but with a different taxonomic composition (Van den
Brink et al., 2011). GB approaches have recently been used for the retro-
spective risk assessment of community-level effects towards ammonia
and nitrogen using field-based SSDs (Yang et al., 2017). However,
there are many uncertainties in using retrospective risk assessment ap-
proaches, for instance, due to the inability to disentangle effects caused
by the stressor of interest fromother stressors (either natural or anthro-
pogenic) that might be present at the site under study. For this reason,
we do not consider retrospective risk assessment studies in our review.

Although SSDs are considered more representative of real species
assemblages than when only an algae, an invertebrate, and a fish are
evaluated, they still do not consider indirect effects of chemical expo-
sure, i.e. effects on food availability, predation, competitive interactions
or feedback mechanisms. Indeed, all studies described in this review
only consider direct effects of chemical exposure on organism sensitiv-
ity. However, certain methods are better able than others to be used for
the extrapolation of effects to higher levels of organization. For instance,
TB models permit the derivation of hypotheses on what might happen
to specific functional groups, whilst RB can only do this if functions
are clearly restricted to taxonomic or phylogenetic groups. Imagine,
for example, that predators are more sensitive to a certain chemical
than herbivores due to a difference in assimilation efficiency (a relation-
ship found in Hendriks et al., 2001). It is well known from literature that
functional traits like feeding guild are not strongly conserved across tax-
onomy (e.g. see Table 1 in Poteat et al., 2015 for the distribution of feed-
ing guilds over the orders Ephemeroptera, Plecoptera, and Trichoptera).
Therefore RB approaches will fail to extrapolate the effect of this rela-
tionship to the community level, whilst TB approaches will be able to
do so. Additionally, hypotheses derived from TB models can directly
link into stochastic ecosystem models (e.g. De Laender et al., 2015).
Such models are able to extrapolate effects found for specific functional
groups to the community level, incorporating factors like species
interactions and functional redundancy (Rosenfeld, 2002). For GB ap-
proaches, examples exist of how to extrapolate direct effects to popula-
tion level effects. For instance, De Coen and Janssen (2003) have found a
strong relationship (0.88 < R2< 0.99) between the cellular energy allo-
cation biomarker response to several chemicals and population level
effects of Daphnia magna. However, studies extrapolating effects found
on a single species to community level effects remain absent. For IC
models, no examples of extrapolations to higher biological levels exist,
besides the use of assessment factors.

3.3. A combined approach to predicting sensitivity

Since all the methods discussed in this review have their own
strengths and weaknesses, our main concern is not identifying which
method results in models with the highest explanatory power, but
rather in understanding how the methods can be incorporated into a
conceptual framework. Indeed, all studies discussed in this review
(Table 1) have demonstrated the ability to predict differences in species
sensitivity to a certain extent, although there was not one method that
consistently outperformed the others, and all of them seemed restricted
in the maximum amount of variation in species sensitivity they could
explain. However, studies which combined predictors from multiple
mechanistic explanations observed an increased model performance

compared to when predictors belonging to only onemechanistic expla-
nation were included. For example, Larras et al. (2014) and Buchwalter
et al. (2008) both found that combining TB and RB methods (trophic
preference with phylogenetic signal, and body weight with taxonomic
family, respectively) explained more variation than either method
alone. These findings have found consistent support in further studies
(e.g. Ippolito et al., 2012; Poteat et al., 2015).

That combining predictors belonging to different predictor groups
leads to better models can be explained by the fact that each of the pre-
dictor groups explains a different part of the sensitivity processes as un-
derstood under the TKTD framework (Fig. 2). Studies describing species
differences in TK parameters (e.g. Buchwalter et al., 2008; Rubach et al.,
2012) found that traits like mode of respiration, body size and other
morphological traits are good predictors of uptake rates, whilst elimina-
tion rates have a very strongphylogenetic signal.We are unaware of any
studies that have explored the relationships between GB predictors and
TD parameters, but since TD parameters describe processes related to
toxicity thresholds inside the organism, the presence, absence, and dis-
tribution of chemical receptors are likely to be strong predictors of dif-
ferences in the TD part of species sensitivity (e.g. as found in Larras
et al., 2014). So we can hypothesise that TB approaches are good in
explaining the TK part of differences in species sensitivity, whilst GB ap-
proaches are good in explaining the TD part of differences in species
sensitivity (Fig. 2). Additionally, RB approaches have the potential to
represent aspects of both TK and TD processes, because relatedness
acts as a proxy for the likelihood of sharing a niche and therefore traits
(TK), but also for sharing similar biochemical processes (TD). Therefore,
RB predictors can be added to themodel to represent sensitivity related
processes that are still unknown (Fig. 2). Alternatively, a stand-alone RB
analysis can be used to distinguishwhich taxa are sensitive and tolerant
to a specific chemical orMOA. This information can help ease the search
for molecular target(s) or traits powerful in describing differences in
species sensitivity, since it must be due to genomic or trait differences
existing between sensitive and tolerant taxa. Finally, IC models can be
used if theMOA of the chemical under study has been extensively stud-
ied before, and if the taxonomic coverage of thesemodels is sufficient to
determine the potential risk to non-target organisms.

Considering that the best performing models can be found by com-
bining the different methods in a conceptual framework, the different
layers (IC, RB, TB, GB) of the TK and TD processes as illustrated in
Fig. 2 can be regarded as different levels of a tiered approach, each
level introducing more complexity and mechanistic explanation. At
the lowest level of this approach, you can find IC models, which can
be used for a preliminary hazard assessment. For this, existing ICmodels
should be collected and applied to conduct a preliminary assessment of
hazard following aweight-of-evidence approach. Besides evaluating the
potential risk to non-target species, the usedmodels should be assessed
on their taxonomic coverage andmodel performance,whose thresholds
should be set beforehand. The thresholds of the taxonomic coverage
and model performance will depend on the trade-off between the pur-
pose of the modelling effort (i.e. to support priority setting procedures,
to supplement the use of experimental data in weight-of-evidence
approaches, or to completely substitute the need for experimental
data) and the strictness of the regulatory framework that the target
compound falls under (some being more conservative than others). At
the end of every tier, an evaluation is done to check whether the risks
are shown to be negligible or acceptable with reasonable certainty,
andwhether enough information is available tomake a regulatory deci-
sion. If the evaluation still indicates a potential risk to certain non-target
organisms or further information is required for decision making, con-
tinuation to the next tier is necessary.

In the higher levels of this approach, predictor groups are added
according to their data availability. First, the most abundantly available
and easily accessible data is added to the models: taxonomic related-
ness. Model construction is done anew, followed by an evaluation of
the risks, taxonomic coverage, and model performance. If necessary,
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we continue to the next level, in which trait predictors are introduced.
For this, a hypothesis-driven approach is used to select sensitivity-
related traits. In the case that sensitivity-related traits of the taxa-
compound combination are unknown, the previous RB approach can
be used to focus research. For instance, the RB approach has distin-
guished certain taxonomic groups as sensitive or tolerant. A study of
the traits belonging with these taxonomic groups can assist in creating
hypotheses regarding sensitivity-related traits. If traits data are insuffi-
ciently available in existing databases, new traits data can be collected
using literature research or measuring the traits in the laboratory.
Once sufficient traits data are available, TB-RB models can be con-
structed, and risk and model evaluation is repeated. In the next and
final level of this approach, more mechanistic information can be
added to the models by introducing GB predictors. For this, molecular
markers important for the MOA of the target compound under study
need to be known and available. If this is not the case, the RB approach
can be used to focus research, similarly as how this was done for traits.
Once sufficient data are available, TB-GBmodels can be constructed, po-
tentially supplemented with RB predictors to represent any missing
molecular markers or traits that are important for describing the sensi-
tivity process. Only when it is still not clear whether the risk conclusion
is acceptable after the final risk and model evaluation, execution of ex-
periments following one of the more traditional tiered approaches is
necessary.

4. Which statistical considerations are important when extrapolat-

ing species sensitivity?

The final feature of predictive models that this review discusses, is
the statistical considerations that are important when extrapolating
species sensitivity. After all, most modellers are aware that a major
part of the modelling outcome is determined by choices made along
the modelling process. These choices range from the selection of input
data (Section 2), to the method selected for (preliminary) variable se-
lection. Here, we want to discuss modelling considerations that have
so far not been discussed in this review, but are main determinants for
the modelling outcome.

The first consideration is the omission of data points. Modelling
studies often depend on a subset of data available in literature or data-
bases, and, as mentioned in Section 2, model performance is largely de-
pendent on this sub-setting of the input data. Therefore, it is crucial that
data are only omitted or included under clear andwell-documented cir-
cumstances. Data should never be omitted without explanation, as this
can lead to the suspicion that outliers weremerely removed to improve
the model.

The second consideration is the use of confounded predictors. If two
predictors are highly collinear, they contribute the same information
twice, thus confounding the statistical association and making it more
difficult to deduce a mechanistic interpretation (Dormann et al.,
2013). Therefore, preliminary variable selection is an important process.
Van den Berg et al. (2019) assessed the optimal collinearity threshold
for trait predictors, and found an increase in cross-validation error
with an increasing collinearity threshold. In general, a collinearity of
maximum 70% is allowed, and is found sufficient to keep collinearity
under control (e.g. Dormann et al., 2013). Research performed on a GB
based approach studied the influence of different preliminary variable
selection methods on model performance (Mannheimer et al., 2019).
They found that the variable selectionmethod only hadmarginal effects
on Spearman correlations between predicted andmeasured values, and
that as long as the signal to noise ratio is high, the dominant effect will
be captured regardless of the preliminary variable selection method.
This is to a large extent true for big datasets containing many collinear
predictors, which might be the case for GB approaches. For smaller
datasets, however, preliminary variable selection methods can have a
severe impact on the modelling results. Predictors should in that case
be collected deliberately avoiding collinearity, and with clear underly-
ing hypotheses.

The third consideration is that any descriptor value, measured or
calculated, can potentially contain errors. Molecular descriptors, for in-
stance, may vary depending on the conformation of molecules and on
the software used (Benfenati et al., 2001; Schultz and Cronin, 2003).
Traits like size and number of offspring per clutch are known to vary
over space (Orlofske and Baird, 2014), and are additionally recognized
to alter ecological dynamics through indirect effects (Bolnick et al.,

Fig. 2.An abstract visualization of the conceptual framework suggested to combine the differentmodelling approaches (IC, RB, TB and GB) discussed in this review. The different layers (IC,
RB, TB, GB) of the TK and TD processes can be regarded as the steps of a tiered approach, increasing in complexity and mechanistic explanation.
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2011). Therefore, the more predictors included in the model, the larger
the chance of incorporating errors. Extrapolating the variation associated
with predictors is a field not yet satisfactorily explored, but crucial if
modelling approaches ever want to take a more dominant place in the
risk assessment process (e.g. by means of Bayesian approaches, Wintle
et al., 2003). For this to be possible, though, accessibility to raw data is
necessary. Proper registration and transparency of test methods used
and results generated will help making data-mining approaches more
feasible, especially if rawdata are organized according to clear standards.
Guidelines and standards have been developed for ecotoxicity data (e.g.
Kase et al., 2016; Moermond et al., 2016; Society of Environmental
Toxicology and Chemistry, 2019), but also for gene expression data the
minimum quantity and quality of information required to interpret and
verify study results has been defined (Brazma et al., 2001).

The fourth and final consideration concerns overfitting in general. Bi-
ological processes consist of complex dynamic interactions in a multi-
dimensional system, and non-linear methods have the ability to capture
these complex interactions between variables (e.g. Ladroue et al., 2009).
However, in amulti-dimensional system thesemethods tend to incorpo-
rate noise leading to overfitting. Alternatively, linear methods are more
robust to overfitting, although at the cost of potentially missing impor-
tant non-linear interactions (Mannheimer et al., 2019).Whether a linear
or non-linear method is more suitable depends on the hypothesised
relationship between the dependent and independent variables, the
number of independent variables available, and on the degree of mech-
anistic information contained within these independent variables. Re-
gardless, additional measures can be taken to ensure overfitting is
avoided. The use of the adjusted R2 as model selection criterion should,
for instance, be avoided, although this rule is still regularly broken (e.g.
Rico and Van den Brink, 2015; Rubach et al., 2012; Rubach et al., 2010).
This criterion focuses entirely on maximizing fit and completely disre-
gards model complexity, therefore often resulting in models overfitted
to the training data. Information criteria that consider both fit and com-
plexity (e.g. Aikaike's Information Criterion) are better suited for
selecting amodel (Johnson andOmland, 2004), and are therefore recom-
mended. Another crucial approach to avoid overfitting is to perform a
model validation step. This can be done by splitting the data in a training
and a test set. The model is then fitted to the training data, before being
evaluated on the test data. In this way, themodel can be evaluated on its
predictive power, rather than on its fit. Doing this in a repeated, random-
izedmanner is called cross-validation. However, it is important to realize
that a (cross-)validation exercise is primarily feasiblewhen the dataset is
sufficiently large. When data are limited, bad validation results do not
necessarily indicate an erroneous relationship, and literature might be
available to provide support for the found relationship. However, good
validation results provide proof that the found relationship is consistent
among the available data, and that the model is not performing well
merely due to coincidence.

Regardless of the exact choices made on the considerations
discussed in this section, it is likely that statistically significant models
will be found. However, the outcome and performance of these models
does to a large extent depend on the modelling choices made. For this
reason, communication of choices made during the modelling process
is just as crucial for understanding the modelling outcomes, as are the
modelling outcomes themselves. Striving for reproducible research is
one way to force modelling choices to be communicated, since being
able to recreate the whole process will enable external reviewers to
re-run all the steps made. Reproducible research has as additional
advantage that methods that have been implemented once, do not re-
quire reimplementation multiple times. In this way, we can spend our
efforts on using and elaborating on existing work.

5. Concluding remarks

This review provides an overview of the methodologies currently
available for extrapolating species sensitivity towards chemical

stressors. However, there is not one straight-forward answer to the
question ‘How canwe extrapolate species sensitivity?’. Indeed, the answer
to this question depends on the answers to the sub-questions addressed
in this review: i) how canwedescribe species sensitivity, ii)which inde-
pendent variables are useful for explaining differences in species sensi-
tivity, and iii) which statistical considerations are important when
extrapolating species sensitivity?

Regarding the first question,we show that ERA can primarily benefit
from modelling approaches by describing species sensitivity on effects
that are ecologically relevant and sufficiently robust such that the data
can be used to accurately represent species sensitivity. However, atten-
tion should be paid to data heterogeneity, since this strongly influences
the reliability of the resulting models. Additionally, the importance of
the unit used to describe species sensitivity was discussed, which is pri-
marily important when sensitivity is compared across chemicals, for
instance, when data is grouped according to MOA. Ideally, concentra-
tions should be described using molarities, since chemical sensitivity
is primarily related to molecular activities. Finally, when deciding on
which model is most suitable to answer a specific research question,
we should keep in mind that model performance is a function of the
number of chemicals and/or organisms that the model covers.

Regarding the independent variables that are useful for explaining
differences in species sensitivity, we find that none of the methods
discussed in this review result in the best model performance when
considered alone. When sufficient toxicity data are available, and the
MOA of the chemical is not very specific, IC models are likely to work
(e.g. for baseline toxicants with a strong phylogenetic signal). However,
as toxicity data for the same chemical is required for the tested and pre-
dicted species, IC methods are limited to species frequently used in lab-
oratory testing. Extrapolating to other species therefore requires
mechanistic approaches to construct trustworthy models. In that case,
a combination of predictors originating from multiple approaches is
likely to achieve optimal model performance, since all predictors ex-
plain a unique, complementary part of differences in species sensitivity
(Fig. 2). For these reasons, we suggest a conceptual framework (Fig. 2),
combining predictors describing important traits determining the up-
take and elimination of chemicals (e.g. size, respiration mode,
exoskeleton-thickness), with the amount of sequence similarity in mo-
lecular targets, and relatedness predictors utilised where data for traits
and molecular targets are unavailable. This conceptual framework can
be considered a tiered approach, wheremoving up a tier equals moving
up in level of complexity andmechanistic understanding of the sensitiv-
ity process. We realize that the conceptual framework suggested in
Section 3.3 needs to be developed further to enable practical application
in regulatory risk assessment. A more detailed, set-by-step framework,
supplemented with case studies demonstrating potential practical
applications, will be of great importance for moving this field forward.

The final question has perhaps the most straight-forward answer,
since regardless of the method selected, significant models can be
found. It is, therefore, important that modelling is done in a reproduc-
ible way, and that modelling decisions are clearly communicated
along with modelling results. To optimise reproducibility, we advise
the publication of well-documented scientific code alongwith scientific
studies, as is also in accordance with the good modelling practise as
advised by EFSA (2014). This will not only clarify modelling choices,
but will also help avoid re-implementing methods that have been im-
plemented before, so that we can spend our efforts on continuing and
elaborating on existing work.

So, after answering these three sub-questions, is it now clear how to
extrapolate chemical sensitivity across species? For some of themethods
discussed in this review, this is indeed straight forward, and in some oc-
casions they have already been used in regulatory risk assessment. For
instance, IC models matching model requirements can directly be used
in regulatory risk assessment. However, for cross-species extrapolation
methods to really find its way into regulatory risk assessment, additional
work will have to be done, especially in the area of their uncertainty and
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practical applicability. As briefly has been mentioned before in
Section 3.3, the requirements of themodelling effort (e.g. acceptable un-
certainty boundaries) will depend on the trade-off between the purpose
of themodelling effort (i.e. to support priority setting procedures, to sup-
plement the use of experimental data inweight-of-evidence approaches,
or to completely substitute the need for experimental data) and the
strictness of the regulatory framework that the target compound falls
under (some being more conservative than others). For example, when
models are applied to support priority setting, or to supplement experi-
mental data in weight-of-evidence approaches, their use is more indi-
rect. Under these circumstances, experimental data and other
information is available, making the extrapolation results not likely to
be decisive in the final assessment. However, when the objective is to re-
place experimental data with modelled data, the risk assessment will
heavily rely on the performance of themodels, and thereforewill require
properly validated and applicable models. Especially in the latter case, a
firm grip on the uncertainty associated with these models is necessary.
Without concrete measures of uncertainty, modelling outcomes will
have to be supplemented with something similar to the assessment fac-
tors that we considered unspecific and therefore inappropriate for risk
assessment purposes.

Considering additional work on the practical applicability of cross-
species extrapolation models, the main focus should lie on developing
the conceptual framework suggested here in more detail. Working
through some case studies will demonstrate how feasible the suggested
approach is, and which research fields will need to evolve more before
practical implementation becomes possible. For example, which diffi-
culties lie in the application of RB and TB methods to still unknown
taxonomic- or trait profiles? Will they indeed be able to accurately pre-
dict the sensitivity of natural species assemblages, or will their species
coverage remain too low? Considering GB approaches, however prom-
ising they sound, will it really become possible to use approaches like
this for a wide range of species, or will we get lost in the maze of
AOPs, genetic markers, and key events? Finally, the question remains
whether the current surge for open science and reproducible research
will really turn the field of ecotoxicology into ART (accurate, reliable,
and transparent), or that crucial data and information will remain hid-
den behind walls of journal requirements and regulatory frameworks?
It is only after these things become clear, that we will know how we
can extrapolate species sensitivity. This would offer opportunities for
refining risk assessments, including spatial and temporal consideration
of sensitivity, and provide methods for reducing animal testing and the
costs associated with them.
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