65 research outputs found

    Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy

    Get PDF
    During the Green Revolution, substantial increases in wheat (Triticum aestivum) yields were realized, at least in part, through the introduction of the Reduced height (Rht)-B1b and Rht-D1b semi-dwarfing alleles. In contrast to Rht-B1b and Rht-D1b, the Rht-B1c allele is characterized by extreme dwarfism and exceptionally strong dormancy. Recently, 35 intragenic Rht-B1c suppressor alleles were created in the spring wheat cultivar Maringa, and termed overgrowth (ovg) alleles. Here, 14 ovg alleles with agronomically relevant plant heights were reproducibly classified into nine tall and five semi-dwarf alleles. These alleles differentially affected grain dormancy, internode elongation rate, and coleoptile and leaf lengths. The stability of these ovg effects was demonstrated for three ovg alleles in different genetic backgrounds and environments. Importantly, two semi-dwarf ovg alleles increased dormancy, which correlated with improved pre-harvest sprouting (PHS) resistance. Since no negative effects on grain yield or quality were observed, these semi-dwarf ovg alleles are valuable for breeding to achieve adequate height reduction and protection of grain quality in regions prone to PHS. Furthermore, this research highlights a unique role for the first 70 amino acids of the DELLA protein, encoded by the Rht-1 genes, in grain dormancy

    N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles

    Get PDF
    The unprecedented wheat yield increases during the Green Revolution were achieved through the introduction of the Reduced height (Rht)-B1b and Rht-D1b semi-dwarfing alleles. These Rht-1 alleles encode growth-repressing DELLA genes containing a stop codon within their open reading frame that confers gibberellin (GA)-insensitive semi-dwarfism. In this study, we successfully took the hurdle of detecting wild-type RHT-1 proteins in different wheat organs and confirmed their degradation in response to GAs. We further demonstrated that Rht-B1b and Rht-D1b produce N-terminal truncated proteins through translational reinitiation. Expression of these N-terminal truncated proteins in transgenic lines and in Rht-D1c, an allele containing multiple Rht-D1b copies, demonstrated their ability to cause strong dwarfism, resulting from their insensitivity to GA-mediated degradation. N-terminal truncated proteins were detected in spikes and nodes, but not in the aleurone layers. Since Rht-B1b and Rht-D1b alleles cause dwarfism but have wild-type dormancy, this finding suggests that tissue-specific differences in translational reinitiation may explain why the Rht-1 alleles reduce plant height without affecting dormancy. Taken together, our findings not only reveal the molecular mechanism underlying the Green Revolution but also demonstrate that translational reinitiation in the main open reading frame occurs in plants

    Neonatal clinical pharmacology

    No full text
    Effective and safe drug administration in neonates should be based on integrated knowledge on the evolving physiological characteristics of the infant who will receive the drug and the pharmacokinetics (PK) and pharmacodynamics (PD) of a given drug. Consequently, clinical pharmacology in neonates is as dynamic and diverse as the neonates we admit to our units while covariates explaining the variability are at least as relevant as median estimates. The unique setting of neonatal clinical pharmacology will be highlighted based on the hazards of simple extrapolation of maturational drug clearance when only based on 'adult' metabolism (propofol, paracetamol). Second, maturational trends are not at the same pace for all maturational processes. This will be illustrated based on the differences between hepatic and renal maturation (tramadol, morphine, midazolam). Finally, pharmacogenetics should be tailored to neonates, not just mirror adult concepts. Because of this diversity, clinical research in the field of neonatal clinical pharmacology is urgently needed and facilitated through PK/PD modeling. In addition, irrespective of already available data to guide pharmacotherapy, pharmacovigilance is needed to recognize specific side effects. Consequently, pediatric anesthesiologists should consider to contribute to improved pharmacotherapy through clinical trial design and collaboration, as well as reporting on adverse effects of specific drugs.status: publishe

    A reply to Peter Quarrell:

    No full text
    corecore