228 research outputs found
Feasibility study for reliable magnetic connection switch, phase I Final report
Feasibility of magnetic circuits for high reliability computer switche
Scaling Cosmologies of N=8 Gauged Supergravity
We construct exact cosmological scaling solutions in N=8 gauged supergravity.
We restrict to solutions for which the scalar fields trace out geodesic curves
on the scalar manifold. Under these restrictions it is shown that the axionic
scalars are necessarily constant. The potential is then a sum of exponentials
and has a very specific form that allows for scaling solutions. The scaling
solutions describe eternal accelerating and decelerating power-law universes,
which are all unstable. An uplift of the solutions to 11-dimensional
supergravity is carried out and the resulting timedependent geometries are
discussed. In the discussion we briefly comment on the fact that N=2 gauged
supergravity allows stable scaling solutions.Comment: 17 pages; referenced added, reportnr changed and some corrections in
section
Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3
The restricted bone marrow (BM) localisation of multiple myeloma (MM) cells most likely results from a specific homing influenced by chemotactic factors, combined with the proper signals for growth and survival provided by the BM microenvironment. In analogy to the migration and homing of normal lymphocytes, one can hypothesise that the BM homing of MM cells is mediated by a multistep process, involving the concerted action of adhesion molecules and chemokines. In this study, we report that primary MM cells and myeloma derived cell lines (Karpas, LP-1 and MM5.1) express the chemokine receptor CCR2. In addition, we found that the monocyte chemotactic proteins (MCPs) MCP-1, -2 and -3, three chemokines acting as prominent ligands for CCR2, are produced by stromal cells, cultured from normal and MM BM samples. Conditioned medium (CM) from BM stromal cells, as well as MCP-1, -2 and -3, act as chemoattractants for human MM cells. Moreover, a blocking antibody against CCR2, as well as a combination of neutralizing antibodies against MCP-1, -2 and -3, significantly reduced the migration of human MM cells to BM stromal cell CM. The results obtained in this study indicate the involvement of CCR2 and the MCPs in the BM homing of human MM cells. (C) 2003 Cancer Research UK
Non-Extremal D-instantons and the AdS/CFT Correspondence
We investigate non-extremal D-instantons in an asymptotically background and the role they play in the correspondence.
We find that the holographic dual operators of non-extremal D-instanton
configurations do not correspond to self-dual Yang-Mills instantons, and we
compute explicitly the deviation from self-duality. Furthermore, a class of
non-extremal D-instantons yield Euclidean axionic wormhole solutions with two
asymptotic boundaries. After Wick rotating, this provides a playground for
investigating holography in the presence of cosmological singularities in a
closed universe.Comment: 30 pages, 3 figure
DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition i
The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis
Universal de Sitter solutions at tree-level
Type IIA string theory compactified on SU(3)-structure manifolds with
orientifolds allows for classical de Sitter solutions in four dimensions. In
this paper we investigate these solutions from a ten-dimensional point of view.
In particular, we demonstrate that there exists an attractive class of de
Sitter solutions, whose geometry, fluxes and source terms can be entirely
written in terms of the universal forms that are defined on all SU(3)-structure
manifolds. These are the forms J and Omega, defining the SU(3)-structure
itself, and the torsion classes. The existence of such universal de Sitter
solutions is governed by easy-to-verify conditions on the SU(3)-structure,
rendering the problem of finding dS solutions purely geometrical. We point out
that the known (unstable) solution coming from the compactification on SU(2)x
SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference
Spinning particles in the vacuum C metric
The motion of a spinning test particle given by the Mathisson-Papapetrou
equations is studied on an exterior vacuum C metric background spacetime
describing the accelerated motion of a spherically symmetric gravitational
source. We consider circular orbits of the particle around the direction of
acceleration of the source. The symmetries of this configuration lead to the
reduction of the differential equations of motion to algebraic relations. The
spin supplementary conditions as well as the coupling between the spin of the
particle and the acceleration of the source are discussed.Comment: IOP macros used, eps figures n.
- …