7 research outputs found

    Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.

    Get PDF
    Eukaryotic gene transcription is accompanied by acetylation and methylation of nucleosomes near promoters, but the locations and roles of histone modifications elsewhere in the genome remain unclear. We determined the chromatin modification states in high resolution along 30 Mb of the human genome and found that active promoters are marked by trimethylation of Lys4 of histone H3 (H3K4), whereas enhancers are marked by monomethylation, but not trimethylation, of H3K4. We developed computational algorithms using these distinct chromatin signatures to identify new regulatory elements, predicting over 200 promoters and 400 enhancers within the 30-Mb region. This approach accurately predicted the location and function of independently identified regulatory elements with high sensitivity and specificity and uncovered a novel functional enhancer for the carnitine transporter SLC22A5 (OCTN2). Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide a new tool for the functional annotation of the human genome. Activation of eukaryotic gene transcription involves the coordination of a multitude of transcription factors and cofactors on regulatory DNA sequences such as promoters and enhancers and on the chromatin structure containing these elements 1-3 . Promoters are located at the 5¢ ends of genes immediately surrounding the transcriptional start site (TSS) and serve as the point of assembly of the transcriptional machinery and initiation of transcription 4 . Enhancers contribute to the activation of their target genes from positions upstream, downstream or within a target or neighboring gene Recent investigations using chromatin immunoprecipitation (ChIP) and microarray (ChIP-chip) experiments have described the chromatin architecture of transcriptional promoters in yeast, fly and mammalian systems 9 . In a manner largely conserved across species, active promoters are marked by acetylation of various residues of histones H3 and H4 and methylation of H3K4, particularly trimethylation of this residue. Nucleosome depletion is also a general characteristic of active promoters in yeast and flies, although this feature remains to be thoroughly examined in mammalian systems. Although some studies suggest that distal regulatory elements like enhancers may be marked by similar histone modification patterns 10-13 , the distinguishing chromatin features of promoters and enhancers have yet to be determined, hindering our understanding of a predictive histone code for different classes of regulatory elements. Here, we present high-resolution maps of multiple histone modifications and transcriptional regulators in 30 Mb of the human genome, demonstrating that active promoters and enhancers are associated with distinct chromatin signatures that can be used to predict these regulatory elements in the human genome. RESULTS Chromatin architecture and transcription factor localization We performed ChIP-chip analysis 14 to determine the chromatin architecture along 44 human loci selected by the ENCODE consortium as common targets for genomic analysis 15 , totaling 30 Mb

    Direct isolation and identification of promoters in the human genome

    No full text
    Transcriptional regulatory elements play essential roles in gene expression during animal development and cellular response to environmental signals, but our knowledge of these regions in the human genome is limited despite the availability of the complete genome sequence. Promoters mark the start of every transcript and are an important class of regulatory elements. A large, complex protein structure known as the pre-initiation complex (PIC) is assembled on all active promoters, and the presence of these proteins distinguishes promoters from other sequences in the genome. Using components of the PIC as tags, we isolated promoters directly from human cells as protein-DNA complexes and identified the resulting DNA sequences using genomic tiling microarrays. Our experiments in four human cell lines uncovered 252 PIC-binding sites in 44 semirandomly selected human genomic regions comprising 1% (30 megabase pairs) of the human genome. Nearly 72% of the identified fragments overlap or immediately flank 5′ ends of known cDNA sequences, while the remainder is found in other genomic regions that likely harbor putative promoters of unannotated transcripts. Indeed, molecular analysis of the RNA isolated from one cell line uncovered transcripts initiated from over half of the putative promoter fragments, and transient transfection assays revealed promoter activity for a significant proportion of fragments when they were fused to a luciferase reporter gene. These results demonstrate the specificity of a genome-wide analysis method for mapping transcriptional regulatory elements and also indicate that a small, yet significant number of human genes remains to be discovered

    Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    No full text
    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function
    corecore