14 research outputs found

    Responses of common diving petrel chicks (Pelecanoides urinatrix) to burrow and colony specific odours in a simple wind tunnel

    Get PDF
    Researchers have previously assumed that common diving petrels (Pelecanoides urinatrix) have a limited sense of smell since they have relatively small olfactory bulbs. A recent study, however, showed that adult diving petrels prefer the scent of their own burrow compared to burrows of other diving petrels, implying that personal scents contribute to the burrow’s odour signature. Because diving petrels appear to be adapted to use olfaction in social contexts, they could be a useful model for investigating how chemically mediated social recognition develops in birds. A first step is to determine whether diving petrel chicks can detect familiar and unfamiliar odours. We compared behavioural responses of chicks to three natural stimuli in a wind tunnel: soil collected from their burrow or colony, and a blank control. During portions of the experiment, chicks turned the least and walked the shortest distances in response to odours from the nest, which is consistent with their sedentary behaviour within the burrow. By contrast, behaviours linked to olfactory search increased when chicks were exposed to blank controls. These results suggest that common diving petrel chicks can detect natural olfactory stimuli before fledging, and lay the foundation for future studies on the role of olfaction in social contexts for this species

    Dynamic displacement of normal and detached semicircular canal cupula

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in JARO - Journal of the Association for Research in Otolaryngology 10 (2009): 497-509, doi:10.1007/s10162-009-0174-y.The dynamic displacement of the semicircular canal cupula and modulation of afferent nerve discharge were measured simultaneously in response to physiological stimuli in vivo. The adaptation time constant(s) of normal cupulae in response to step stimuli averaged 36 s, corresponding to a mechanical lower corner frequency for sinusoidal stimuli of 0.0044 Hz. For stimuli equivalent to 40–200 deg/s of angular head velocity, the displacement gain of the central region of the cupula averaged 53 nm per deg/s. Afferents adapted more rapidly than the cupula, demonstrating the presence of a relaxation process that contributes significantly to the neural representation of angular head motions by the discharge patterns of canal afferent neurons. We also investigated changes in time constants of the cupula and afferents following detachment of the cupula at its apex—mechanical detachment that occurs in response to excessive transcupular endolymph pressure. Detached cupulae exhibited sharply reduced adaptation time constants (300 ms–3 s, n = 3) and can be explained by endolymph flowing rapidly over the apex of the cupula. Partially detached cupulae reattached and normal afferent discharge patterns were recovered 5–7 h following detachment. This regeneration process may have relevance to the recovery of semicircular canal function following head trauma.Financial support was provided by the NIDCD R01 DC06685 (Rabbitt) and NASA GSRP 56000135 & NSF IGERT DGE- 9987616 (Breneman)

    Responses of common diving petrel chicks (Pelecanoides urinatrix) to burrow and colony specific odours in a simple wind tunnel

    No full text
    Researchers have previously assumed that common diving petrels (Pelecanoides urinatrix) have a limited sense of smell since they have relatively small olfactory bulbs. A recent study, however, showed that adult diving petrels prefer the scent of their own burrow compared to burrows of other diving petrels, implying that personal scents contribute to the burrow’s odour signature. Because diving petrels appear to be adapted to use olfaction in social contexts, they could be a useful model for investigating how chemically mediated social recognition develops in birds. A first step is to determine whether diving petrel chicks can detect familiar and unfamiliar odours. We compared behavioural responses of chicks to three natural stimuli in a wind tunnel: soil collected from their burrow or colony, and a blank control. During portions of the experiment, chicks turned the least and walked the shortest distances in response to odours from the nest, which is consistent with their sedentary behaviour within the burrow. By contrast, behaviours linked to olfactory search increased when chicks were exposed to blank controls. These results suggest that common diving petrel chicks can detect natural olfactory stimuli before fledging, and lay the foundation for future studies on the role of olfaction in social contexts for this species

    Adapting to a warmer ocean – seasonal shift of baleen whale movements over three decades

    Get PDF
    Date of Acceptance: 11/02/2015Global warming poses particular challenges to migratory species, which face changes to the multiple environments occupied during migration. For many species, the timing of migration between summer and winter grounds and also within-season movements are crucial to maximise exploitation of temporarily abundant prey resources in feeding areas, themselves adapting to the warming planet. We investigated the temporal variation in the occurrence of fin (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) in a North Atlantic summer feeding ground, the Gulf of St. Lawrence (Canada), from 1984 to 2010 using a long-term study of individually identifiable animals. These two sympatric species both shifted their date of arrival at a previously undocumented rate of more than 1day per year earlier over the study period thus maintaining the approximate 2-week difference in arrival of the two species and enabling the maintenance of temporal niche separation. However, the departure date of both species also shifted earlier but at different rates resulting in increasing temporal overlap over the study period indicating that this separation may be starting to erode. Our analysis revealed that the trend in arrival was strongly related to earlier ice break-up and rising sea surface temperature, likely triggering earlier primary production. The observed changes in phenology in response to ocean warming are a remarkable example of phenotypic plasticity and may partly explain how baleen whales were able to survive a number of changes in climate over the last several million years. However, it is questionable whether the observed rate of change in timing can be maintained. Substantial modification to the distribution or annual life cycle of these species might be required to keep up with the ongoing warming of the oceans.Publisher PDFPeer reviewe
    corecore