186 research outputs found

    Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    Get PDF
    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded

    Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    Get PDF
    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded

    Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.

    Get PDF
    Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants

    Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    Get PDF
    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded

    Pharmacological targeting of NF-ΞΊB potentiates the effect of the topoisomerase inhibitor CPT-11 on colon cancer cells

    Get PDF
    NF-ΞΊB interferes with the effect of most anti-cancer drugs through induction of anti-apoptotic genes. Targeting NF-ΞΊB is therefore expected to potentiate conventional treatments in adjuvant strategies. Here we used a pharmacological inhibitor of the IKK2 kinase (AS602868) to block NF-ΞΊB activation. In human colon cancer cells, inhibition of NF-ΞΊB using 10 μM AS602868 induced a 30–50% growth inhibitory effect and strongly enhanced the action of SN-38, the topoisomerase I inhibitor and CPT-11 active metabolite. AS602868 also potentiated the cytotoxic effect of two other antineoplasic drugs: 5-fluorouracil and etoposide. In xenografts experiments, inhibition of NF-ΞΊB potentiated the antitumoural effect of CPT-11 in a dose-dependent manner. Eighty-five and 75% decreases in tumour size were observed when mice were treated with, respectively, 20 or 5 mg kgβˆ’1 AS602868 associated with 30 mg kgβˆ’1 CPT-11 compared to 47% with CPT-11 alone. Ex vivo tumour analyses as well as in vitro studies showed that AS602868 impaired CPT-11-induced NF-ΞΊB activation, and enhanced tumour cell cycle arrest and apoptosis. AS602868 also enhanced the apoptotic potential of TNFΞ± on HT-29 cells. This study is the first demonstration that a pharmacological inhibitor of the IKK2 kinase can potentiate the therapeutic efficiency of antineoplasic drugs on solid tumours

    Fashioning Entitlements: A Comparative Law and Economic Analysis of the Judicial Role in Environmental Centralization in the U.S. and Europe

    Get PDF
    This paper identifies and evaluates, from an economic point of view, the role of the judiciary the steady shift of environmental regulatory authority to higher, more centralized levels of government in both the U.S. and Europe. We supply both a positive analysis of how the decisions made by judges have affected the incentives of both private and public actors to pollute the natural environment, and normative answers to the question of whether judges have acted so as to create incentives that move levels of pollution in an efficient direction, toward their optimal, cost-minimizing (or net-benefit-maximizing) levels. Highlights of the analysis include the following points: 1) Industrial-era local (state or national) legislation awarding entitlements to pollute was almost certainly inefficient due to a fundamental economic obstacle faced by those who suffer harm from the over-pollution of publicly owned natural resources: the inability to monetize and credibly commit to repay the future economic value of reducing pollution. 2) When industrial era pollution spilled across state lines in the US, the federal courts, in particular the Supreme Court, fashioned a federal common law of interstate nuisance that set up essentially the same sort of blurry, uncertain entitlements to pollute or be free of pollution that had been created by the state courts in resolving local pollution disputes. We argue that for the typical pollution problem, a legal regime of blurry interstate entitlements - with neither jurisdiction having a clear right either to pollute or be free of pollution from the other - is likely to generate efficient incentives for interjursidictional bargaining, even despite the public choice problems besetting majority-rule government. Interestingly, a very similar system of de facto entitlements arose and often stimulated interjursidictional bargaining in Europe as well as in the U.S. 3) The US federal courts have generally interpreted the federal environmental statutes in ways that give clear primacy to federal regulators. Through such judicial interpretation, state and local regulators face a continuing risk of having their decisions overridden by federal regulators. This reduces the incentives for regulatory innovation at the state and local level. Judicial authorization of federal overrides has thus weakened the economic rationale for cooperative federalism suggested by economic models of principal-agent relationships. As a result of the principle of attribution, there is less risk in Europe that (like in the US) courts would enlarge the federal purview and thereby limit the powers of the Member States. Despite this principle, the power of the European bureaucracy (that is, the European Commission) has steadily increased and led to a steady shift of environmental regulatory competencies to the European level. This shift is only sometimes normatively desirable, and yet there is little that the ECJ can or will do to slow it

    TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members

    Get PDF
    TNF receptor 1 signaling induces NF-ΞΊB activation and necroptosis in L929 cells. We previously reported that cellular inhibitor of apoptosis protein-mediated receptor-interacting protein 1 (RIP1) ubiquitination acts as a cytoprotective mechanism, whereas knockdown of cylindromatosis, a RIP1-deubiquitinating enzyme, protects against tumor necrosis factor (TNF)-induced necroptosis. We report here that RIP1 is a crucial mediator of canonical NF-ΞΊB activation in L929 cells, therefore questioning the relative cytoprotective contribution of RIP1 ubiquitination versus canonical NF-ΞΊB activation. We found that attenuated NF-ΞΊB activation has no impact on TNF-induced necroptosis. However, we identified A20 and linear ubiquitin chain assembly complex as negative regulators of necroptosis. Unexpectedly, and in contrast to RIP3, we also found that knockdown of RIP1 did not block TNF cytotoxicity. Cell death typing revealed that RIP1-depleted cells switch from necroptotic to apoptotic death, indicating that RIP1 can also suppress apoptosis in L929 cells. Inversely, we observed that Fas-associated protein via a death domain, cellular FLICE inhibitory protein and caspase-8, which are all involved in the initiation of apoptosis, counteract necroptosis induction. Finally, we also report RIP1-independent but RIP3-mediated necroptosis in the context of TNF signaling in particular conditions

    N-substituted benzamides inhibit NFΞΊB activation and induce apoptosis by separate mechanisms

    Get PDF
    Benzamides have been in clinical use for many years in treatment against various disorders. A recent application is that as a sensitizer for radio- or chemotherapies. We have here analysed the mechanism of action of N-substituted benzamides using an in vitro system. We found that while procainamide was biologically inert in our system, the addition of a chloride in the 3β€² position of the benzamide ring created a compound (declopramide) that induced rapid apoptosis. Furthermore, declopramide also inhibited NFΞΊB activation by inhibition of IΞΊBΞ² breakdown. An acetylated variant of declopramide, N-acetyl declopramide, showed no effect with regard to rapid apoptosis induction but was a potent inhibitor of NFΞΊB activation. In fact, the addition of an acetyl group to procainamide in the 4β€² position was sufficient to convert this biologically inactive substance to a potent inhibitor of NFΞΊB activation. These findings suggest two potential mechanisms, induction of early apoptosis and inhibition of NFΞΊB mediated salvage from apoptosis, for the biological effect of N-substituted benzamides as radio- and chemo-sensitizers. In addition it suggests that N-substituted benzamides are potential candidates for the development of anti-inflammatory compounds using NFΞΊB as a drug target. Β© 1999 Cancer Research Campaig

    Protein-based identification of quantitative trait loci associated with malignant transformation in two HER2+ cellular models of breast cancer

    Get PDF
    Background A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer. Results A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed protein ubiquitination and apoptosis signaling pathways were both enriched in the two breast cancer models while IGF signaling and cell motility pathways were enriched in BT474 and amino acid metabolism were enriched in the SKBR3 cell line. Conclusion While protein ubiquitination and apoptosis signaling pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1

    t10c12 Conjugated Linoleic Acid Suppresses HER2 Protein and Enhances Apoptosis in SKBr3 Breast Cancer Cells: Possible Role of COX2

    Get PDF
    BACKGROUND: HER2-targeted therapy with the monoclonal antibody trastuzumab (Herceptin) has improved disease-free survival for women diagnosed with HER2-positive breast cancers; however, treatment resistance and disease progression are not uncommon. Current data suggest that resistance to treatment in HER2 cancers may be a consequence of NF-kappaB overexpression and increased COX2-derived prostaglandin E2 (PGE(2)). Conjugated linoleic acid (CLA) has been shown to have anti-tumor properties and to inhibit NF-kappaB activity and COX2. METHODS: In this study, HER2-overexpressing SKBr3 breast cancer cells were treated with t10c12 CLA. Protein expression of the HER2 receptor, nuclear NF-kappaB p65, and total and phosphorylated IkappaB were examined by western blot and immunofluorescence. PGE(2) levels were determined by ELISA. Proliferation was measured by metabolism of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and apoptosis was measured by FITC-conjugated Annexin V staining and flow cytometry. RESULTS/CONCLUSIONS: We observed a significant decrease in HER2 protein expression on western blot following treatment with 40 and 80 microM t10c12 CLA (p<0.01 and 0.001, respectively) and loss of HER2 protein in cells using immunoflourescence that was most pronounced at 80 microM. Protein levels of nuclear NF-kappaB p65 were also significantly reduced at the 80 microM dose. This was accompanied by a significant decrease in PGE(2) levels (p = 0.05). Pretreatment with t10c12 CLA significantly enhanced TNFalpha-induced apoptosis and the anti-proliferative action of trastuzumab (p = 0.05 and 0.001, respectively). These data add to previous reports of an anti-tumor effect of t10c12 CLA and suggest an effect on the HER2 oncogene that may be through CLA mediated downregulation of COX2-derived PGE(2)
    • …
    corecore