1,399 research outputs found

    Benchmarking of localization solutions : guidelines for the selection of evaluation points

    Get PDF
    Indoor localization solutions are key enablers for next-generation indoor navigation and track and tracing solutions. As a result, an increasing number of different localization algorithms have been proposed and evaluated in scientific literature. However, many of these publications do not accurately substantiate the used evaluation methods. In particular, many authors utilize a different number of evaluation points, but they do not (i) analyze if the number of used evaluation points is sufficient to accurately evaluate the performance of their solutions and (ii) report on the uncertainty of the published results. To remedy this, this paper evaluates the influence of the selection of evaluation points. Based on statistical parameters such as the standard error of the mean value, an estimator is defined that can be used to quantitatively analyze the impact of the number of used evaluation points on the confidence interval of the mean value of the obtained results. This estimator is used to estimate the uncertainty of the presented accuracy results, and can be used to identify if more evaluations are required. To validate the proposed estimator, two different localization algorithms are evaluated in different testbeds and using different types of technology, showing that the number of required evaluation points does indeed vary significantly depending on the evaluated solution. (C) 2017 Elsevier B.V. All rights reserved

    A physiological and genetic analysis of growth characteristics in Hordeum spontaneum

    Get PDF
    The aim of this project was to determine to what extent physiological, morphological and chemical growth characteristics are genetically linked and/or caused by common factors. First, 84 accessions of H. spontaneum from different habitats in Israel were screened for their variation in growth traits. A cross was made between contrasting genotypes and the F3 offspring were grown under close to optimal conditions and analysed for their growth characteristics. A map was constructed using AFLP markers. On chromosome 1 two QTLs for relative growth rate and specific leaf area were found at the same location. On chromosome 4 two QTLs for photosynthesis per unit leaf area and stomatal conductance were found at the same position. These traits are probably genetically linked or controlled by a common factor

    Real-life performance of protocol combinations for wireless sensor networks

    Get PDF
    Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases

    A hybrid indoor localization solution using a generic architectural framework for sparse distributed wireless sensor networks

    Get PDF
    Indoor localization and navigation using wireless sensor networks is still a big challenge if expensive sensor nodes are not involved. Previous research has shown that in a sparse distributed sensor network the error distance is way too high. Even room accuracy can not be guaranteed. In this paper, an easy-to-use generic positioning framework is proposed, which allows users to plug in a single or multiple positioning algorithms. We illustrate the usability of the framework by discussing a new hybrid positioning solution. The combination of a weighted (range-based) and proximity (range-free) algorithm is made. Roth solutions separately have an average error distance of 13.5m and 2.5m respectively. The latter result is quite accurate due to the fact that our testbeds are not sparse distributed. Our hybrid algorithm has an average error distance of 2.66m only using a selected set of nodes, simulating a sparse distributed sensor network. All our experiments have been executed in the iMinds testbed: namely at "de Zuiderpoort". These algorithms are also deployed in two real-life environments: "De Vooruit" and "De Vijvers"

    Wi-PoS : a low-cost, open source ultra-wideband (UWB) hardware platform with long range sub-GHz backbone

    Get PDF
    Ultra-wideband (UWB) localization is one of the most promising approaches for indoor localization due to its accurate positioning capabilities, immunity against multipath fading, and excellent resilience against narrowband interference. However, UWB researchers are currently limited by the small amount of feasible open source hardware that is publicly available. We developed a new open source hardware platform, Wi-PoS, for precise UWB localization based on Decawave’s DW1000 UWB transceiver with several unique features: support of both long-range sub-GHz and 2.4 GHz back-end communication between nodes, flexible interfacing with external UWB antennas, and an easy implementation of the MAC layer with the Time-Annotated Instruction Set Computer (TAISC) framework. Both hardware and software are open source and all parameters of the UWB ranging can be adjusted, calibrated, and analyzed. This paper explains the main specifications of the hardware platform, illustrates design decisions, and evaluates the performance of the board in terms of range, accuracy, and energy consumption. The accuracy of the ranging system was below 10 cm in an indoor lab environment at distances up to 5 m, and accuracy smaller than 5 cm was obtained at 50 and 75 m in an outdoor environment. A theoretical model was derived for predicting the path loss and the influence of the most important ground reflection. At the same time, the average energy consumption of the hardware was very low with only 81 mA for a tag node and 63 mA for the active anchor nodes, permitting the system to run for several days on a mobile battery pack and allowing easy and fast deployment on sites without an accessible power supply or backbone network. The UWB hardware platform demonstrated flexibility, easy installation, and low power consumption

    Experimental evaluation of UWB indoor positioning for indoor track cycling

    Get PDF
    Accurate radio frequency (RF)-based indoor localization systems are more and more applied during sports. The most accurate RF-based localization systems use ultra-wideband (UWB) technology; this is why this technology is the most prevalent. UWB positioning systems allow for an in-depth analysis of the performance of athletes during training and competition. There is no research available that investigates the feasibility of UWB technology for indoor track cycling. In this paper, we investigate the optimal position to mount the UWB hardware for that specific use case. Different positions on the bicycle and cyclist were evaluated based on accuracy, received power level, line-of-sight, maximum communication range, and comfort. Next to this, the energy consumption of our UWB system was evaluated. We found that the optimal hardware position was the lower back, with a median ranging error of 22 cm (infrastructure hardware placed at 2.3 m). The energy consumption of our UWB system is also taken into account. Applied to our setup with the hardware mounted at the lower back, the maximum communication range varies between 32.6 m and 43.8 m. This shows that UWB localization systems are suitable for indoor positioning of track cyclists

    Integrating Battery-Less Energy Harvesting Devices in Multi-hop Industrial Wireless Sensor Networks

    Full text link
    Industrial wireless sensor networks enable real-time data collection, analysis, and control by interconnecting diverse industrial devices. In these industrial settings, power outlets are not always available, and reliance on battery power can be impractical due to the need for frequent battery replacement or stringent safety regulations. Battery-less energy harvesters present a suitable alternative for powering these devices. However, these energy harvesters, equipped with supercapacitors instead of batteries, suffer from intermittent on-off behavior due to their limited energy storage capacity. As a result, they struggle with extended or frequent energy-consuming phases of multi-hop network formation, such as network joining and synchronization. To address these challenges, our work proposes three strategies for integrating battery-less energy harvesting devices into industrial multi-hop wireless sensor networks. In contrast to other works, our work prioritizes the mitigation of intermittency-related issues, rather than focusing solely on average energy consumption, as is typically the case with battery-powered devices. For each of the proposed strategies, we provide an in-depth discussion of their suitability based on several critical factors, including the type of energy source, storage capacity, device mobility, latency, and reliability.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities
    corecore