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Abstract

Indoor localization solutions are key enablers for next-generation indoor nav-
igation and track and tracing solutions. As a result, an increasing number
of different localization algorithms have been proposed and evaluated in sci-
entific literature. However, many of these publications do not accurately
substantiate the used evaluation methods. In particular, many authors uti-
lize a different number of evaluation points, but they do not (i) analyze if the
number of used evaluation points is sufficient to accurately evaluate the per-
formance of their solutions and (ii) report on the uncertainty of the published
results. To remedy this, this paper evaluates the influence of the selection of
evaluation points. Based on statistical parameters such as the standard error
of the mean value, an estimator is defined that can be used to quantitatively
analyze the impact of the number of used evaluation points on the confidence
interval of the mean value of the obtained results. This estimator is used to
estimate the uncertainty of the presented accuracy results, and can be used
to identify if more evaluations are required. To validate the proposed estima-
tor, two different localization algorithms are evaluated in different testbeds
and using different types of technology, showing that the number of required
evaluation points does indeed vary significantly depending on the evaluated
solution.
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1. Introduction

In recent years, location-based information has become indispensable in
multiple application domains. As such, the amount of published research
focusing on indoor localization has increased tremendously. The outcome of
these publications are mostly promising, though, the presented results are
often biased since a decent evaluation is not always applied. Solutions from
scientific literature are often evaluated in different environments using differ-
ent evaluation methodologies [1]. The chosen environment and the evaluation
points can drastically influence the performance results of the solution. As
a result, it is hard to compare the performance of different localization solu-
tions from scientific literature [2], as well as to assess with which confidence
the reported results should be interpreted.

This paper focuses on the latter aspect: identifying the confidence of re-
ported results based on the number of used evaluation points. As such, a
clear definition of ‘an evaluation point’ is appropriate. In this paper, an eval-
uation point is a physical location in a test environment whereof the exact
coordinates are known by the system evaluator, but not by the localization
system. At this physical location, measurement data is collected, and the
localization algorithm has to process this data and try to estimate the co-
ordinates of this physical location, without having knowledge of the ground
truth. The euclidean distance between the estimated point and the evalua-
tion point is defined as the ‘error distance’. In general, localization systems
aim to have a low average or median error distance.

Typically, using as few evaluation points as possible is preferred, since
this reduces the efforts needed for evaluating the system. However, the error
distances of localization systems often exhibit a large variance, with error
distances ranging from several centimeters to tens of meters. As such, us-
ing too few evaluation points will not result in a reported average accuracy
with a high confidence level. In contrast, using too many evaluation points
complicates the evaluation process and might not always be necessary.

The main contributions of this paper are as follows. (i) Firstly, the paper
investigates whether or not the number of evaluation points has an impact
on the presented results. (ii) Secondly, the paper defines an estimator which
can determine the number of evaluation points that is needed to obtain a reli-
able performance result. (iii) Thirdly, guidelines are defined that researchers
can follow to improve the reliability of their presented performance results.
(iv) Finally, the correctness of these guidelines are verified using multiple



configurations of localization systems.

The remainder of this paper is structured as follows. Section 2 contains
the related work. Section 3 describes in detail the experimental testbeds
and indoor localization algorithms, as well as the data collection process.
The behavior of the error distances is investigated in Section 4. The next
section, Section 5 analyzes the behavior and properties of the mean value
and standard deviation of the subsets. Based on these findings, guidelines
for determining the amount of evaluation points and their corresponding
confidence interval are provided in Section 6. Finally, the paper’s conclusions
can be found in Section 7.

2. Related work

This related work section discusses the number of evaluation points used
in state of the art research papers. In addition, a number of recent evaluation
benchmarks and best practices are discussed.

2.1. The number of evaluation points in scientific papers

In [3], the authors analyze and compare 21 research papers each present-
ing an Indoor Localization Sensing (ILS) solution. The paper summarizes
their algorithm design, devices, test setup and the performance results. How-
ever, no information is given regarding the used methodology for selecting the
amount and locations of the evaluation points for each solutions. Since it has
been shown [2] that some locations (e.g. center of the room) typically have
much smaller error distances than more challenging evaluation points (e.g.
near the walls), it is difficult to objectively compare the proposed solutions
without more information about the evaluation points.

To overcome this lack of comparability, some recent papers evaluate the
performance of localization solutions in identical conditions. For example,
Xiaowei Luo et al. present in [4] a comparative evaluation of Received Signal-
Strength Index (RSSI) based indoor localization techniques for construction
job sites. Four different algorithms (MinMax, Maximum Likelihood, Ring
Overlapping Circle RSSI & k-nearest Neighbor) are each evaluated in two
different test environments (Building & Job site). The authors selected 21
measurement points in the first testbed (44.87 m?) and 18 points in the sec-
ond testbed (32.26 m?). Similarly, in [5] 8 different localization solutions are
evaluated in the same hospital environment, using the same 73 evaluation
points. Although in this case more evaluation points are used, it is not clear



whether using such a dense evaluation point grid was either overkill (i.e. not
necessary for a detailed analysis) or still insufficient. Although the com-
parisons in these papers are more objective than the previously mentioned
survey due to the use of the same evaluation points, none of these papers
indicates why they selected these specific amounts of evaluation points, nor
whether the number of used evaluation points was sufficient for obtaining
reliable, comparable results.

Since there are no clear indications on the required number of evalua-
tion points, some authors prefer to oversample their environment. Examples
include e.g. Gayathri Chandrasekaran et al., who present an empirical eval-
uation of the limits on localization using signal strength [6]. In their work,
a trace-driven emulation is used to evaluate the performance of 12 different
localization algorithms. They applied the “leave-one-out” approach to eval-
uate the algorithms using a fingerprint database. As such, a dataset of 400
evaluation points is split into 400 sets of 399 training points and one testing
point. Similarly, the publicly available UJIIndoor-Loc dataset WiFi finger-
printing dataset [7] consists of 933 reference positions (some of which can
be used as evaluation points). Although such a large dataset is very useful,
obtaining such large qualities of evaluation points is not feasible for most
researchers that want to evaluate their solutions.

As such, in summary, for most scientific papers the confidence levels of
the reported accuracies are unknown and it is not clear how the number of
evaluation points influences this confidence level. As a result, it is either im-
possible to objectively compare the performance of different scientific papers,
and/or datasets need to be of such a magnitude that obtaining them is not
feasible in most research environments.

2.2. FEvaluation procedure in competitions

Besides the scientific papers mentioned before, the results discussed in this
paper are also extremely relevant for indoor localization competitions. Some
examples include the EvVAAL competition, the Microsoft IPSN competition
and the EVARILOS competition.

e EvAAL (Evaluation Ambient Assisted Living (AAL) through Compet-
itive Benchmarking) was the first organization who started evaluating
and comparing multiple solutions. Since their main focus is tracking,
EvAAL benchmarks solutions use a path, not evaluation points. Cur-
rently, they have multiple tracks and the competition is held yearly at
the Indoor Positioning & Indoor Navigation (IPIN) conference.
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e Since 2014, Microsoft started organizing indoor localization competi-
tions yearly at the Information Processing in Sensor Networks (IPSN)
conference. In contrast to EvAAL, Microsoft uses predefined static
evaluation points to determine the performance accuracy of the eval-
uated solutions. In 2014 and 2015, 20 evaluation points were used.
However, to save time, in 2015 this number was reduced to only 15 [8].
Since the error distance for the different evaluation points showed a
large variation [9], it is not clear if this number is sufficient to objec-
tively compare the performance of all contestants.

e Finally, Evaluation of RF-based Indoor Localization Solutions (EVARILOS)
organized a competition with a special focus on the benchmarking
methodology. The main focuses were the evaluation procedure in com-
bination with the performance metrics and its definitions. During the
competition, two different environments were used with each a mini-
mum of 20 evaluation points.

In these competitions, an (often monetary) award is given to the competi-
tor that participated with the localization solution with lowest average error
distance. Since these competitions are typically organized on a single day,
during which multiple solutions need to be evaluated, they prefer to use as
few evaluation points as possible. Often, several competitors have very simi-
lar performances, and it is not always clear if the winner actually performed
best or just had the good fortune that the selected evaluation points were in
his favor. Since the impact of winning such a competition is high (especially
for participating companies), including information about the certainty of
the outcomes in the evaluation procedure would be much more fair to the
contestants.

A summary of the number of typically used evaluation points in recent
research papers and recent indoor localization competitions is shown in Ta-
ble 1. Currently no rule of thumb exists regarding the number of used eval-
uation points, with numbers varying from 15 (probably not enough) to over
200 (probably overkill). Even very prestigious competitions sometimes limit
themselves to using only 15 evaluation points, whereas many scientific pa-
pers seem to converge on using 20 evaluation points. Based on these strong
variations in the number of used evaluation points, it is clear that no best
practices are currently available regarding the number of used evaluation
points.



Table 1: Overview of papers and competitions with the used test environment and evalu-

ation points.

Summary Test Environment Area [m?] # Ref
Evaluation
Points
RESEARCH PAPERS
Indoor Localization Typical buildings [12, 8625] n.a. (3]
Sensing solutions
Comparative evalu- Building 44.8 21 [4]
ation #1
Comparative evalu- 40th floor under 32.13 18 [4]
ation #2 construction
ORBIT ORBIT Indoor 334.45 400 [6]
Testbed
Optimal landmark 3rd floor of CoRE 1486 286 [10]
placement Building
High performance Outdoor, open field 100 , 144 36, 49 [11]
COMPETITIONS
EvAAL 2011 - 2016 Home environment - n.a Tracking a  [12]
Exhibition hall path
Microsoft ~ Indoor Large office 300 20 [9]
Localization 2014
Microsoft ~ Indoor Exhibition hall 2000 20 8]
Localization 2015
Microsoft ~ Indoor Large office 465 15 [13]
Localization 2016
EVARILOS 2014 Office 450 20 [14]




2.3. Benchmarking approaches for localization solutions

Finally, the need for better evaluation methods has also been recognized
in the scientific community. Recent papers that proposed improved eval-
uation methods include e.g. the definition of more meaningful evaluation
metrics [1, 15] and the definition of standardized evaluation scenarios [16].
However, although these efforts are extremely important for improving com-
parability between the performance of localization solutions, these works do
not propose any metrics to quantify the trustworthiness that can be assigned
to the reported performance results. In particular, none of these benchmark-
ing proposals include suggestions on how many evaluation points should be
used.

As such, to the best of our knowledge, our work is the first to (i) theo-
retically and experimentally analyze the impact of the number of evaluation
points on the reliability of the reported accuracies and (ii) propose a method-
ology to easily identify the number of required evaluation points during the
evaluation process.

3. Test set-up

The results discussed in this paper have been established using two test
environments, two localization algorithms and multiple technologies (Zigbee,
WiFi and Bluetooth). This section describes the evaluation environments
and algorithms, as well as the process of data gathering.

3.1. Test environments

3.1.1. w-iLab.t I1

As a first evaluation environment, the w-iLab.t II test facility was used.
It is located in Zwijnaarde (Ghent, Belgium) above a cleanroom. Due to
its open nature and the presence of many metal obstacles (metal pipes),
the environment can be considered representative of a challenging industrial
environment. The total area measures 66m by 21m and is shown in Figure 1.
Since the test environment is surrounded by metal walls, it is shielded from
outside wireless interference. Only weak signals can be observed sporadically
at the borders of the test area.

To collect ground truth information, robots can drive through the testbed
and collect measurement data at predefined evaluation points. Since we want
to evaluate the impact of the number of evaluation points, a very fine 2m
x 2m grid of 203 evaluation points was defined where data was collected
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Figure 1: The w-iLab.t II testbed environment located in Zwijnaarde, near Ghent. The
testbed is an open space containing metal pipes and obstacles causing multipath fading.
Therefore, it can be considered as a challenging environment.
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Figure 2: Indication of the 203 evaluation points that were used in the w-iLab.t II test
environment in Zwijnaarde. Yellow areas are not available due to pipes and other construc-
tions. The blue areas indicate the technical equipment (e.g. dataracks) of the testbed. At
these marked locations, it is not feasible to drive a robot.

(Figure 2). A few points are missing in the grid, mainly in the middle of the
test environment, due to the metal obstacles and pipes. Nevertheless, this
number of evaluation points is far larger than the number of used evaluation
points in most scientific literature, especially in terms of number of evaluation
points per square meter.

3.1.2. Hospital environment

A second measurement campaign was performed in an actively used hos-
pital environment (the Sint-Jozefskliniek hospital in Izegem, Belgium). The
measurements were performed in the “surgical day hospital” ward, located
in a new building on the first floor. The end of the corridor was available
for the experiments, while the rest of the ward was in “normal operation”,
meaning patients and nurses were present and were walking around. The
floor plan of the ward is depicted in Figure 3. Patient rooms 9, 10 and 11
were used for the evaluation. A dense evaluation grid of 1 m by 1 m was
marked on the floor resulting in 73 evaluation locations. Note that the grid
was positioned in such a way that grid lines are 10 cm away from the wall.
During the data collection, all doors were open.

3.2. Localization algorithms

To analyze the impact of the number of evaluation points on the reported
accuracy, two different localization approaches where selected: a localization
algorithm based on signal strength that does not use prior information for its
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Figure 3: The floor plan of the hospital environment. The yellow grid represents the
available evaluation points. The grid points with a red cross do not have measurement
data, this results in 73 available evaluation points. Blue dots refer to the location of the
WiFi AP, the green ones represent the location of the Zighee and BLE nodes.
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position estimates, and a tracking algorithm based on Viterbi that keeps track
of previous position estimates to improve the accuracy of position estimates.

3.2.1. Multilateration algorithm

As a first localization algorithm, a multilateration approach based on re-
ceived RSSI-values is selected. This specific algorithm first averages all the
RSSI values received per reachable anchor point. Next, the algorithm ap-
plies multilateration on all possible combinations with three different anchor
nodes. Finally, it averages all the z and y coordinates separately in order
to return the final x and y coordinate of the estimated location. Similar ap-
proaches are very common in scientific literature, and many scientific papers
that describe various optimizations of this basic principle are available. As
such, the algorithm is representative for a wide range of existing solutions.

3.2.2. Viterbi based algorithm

Besides point based localization, the inclusion of tracking information is
a common approach to increase the accuracy of location estimates. For this
paper, a tracking based solution as described in [17] based on the Viterbi
algorithm was used. This algorithm uses semantic data to process and esti-
mate the path that needs to be tracked. As expected, the accuracy of this
solution is higher than the first algorithm (see Section 4), but it can only be
used for continuous tracking of persons or goods.

3.3. Data collection

Indoor localization solutions typically measure environmental data, such
as RSSI values, and transform these measurements into position estimates.
The authors organized two measurement campaigns to capture a raw dataset
of WiFi, Zighee and BLE RSSI traces at the mentioned evaluation points
mentioned in Section 3, once in the w.iLab.t II testbed [1] and once in the
hospital [5]. To eliminate the influence of environmental randomness (e.g.
interference, RSSI fluctuations, human activities, etc.), multiple indoor lo-
calization algorithms can use this dataset as input for position estimations,
allowing comparable results between the different algorithm runs.

For the data collection, RSSI and Time of Arrival (ToA) values were
collected during 90 seconds at each evaluation point using an STM-32W as
a mobile device. During these 90 seconds, the mobile device sequentially
sends unicast message to each available anchor node (in a loop). The an-
chors receiving such a message will reply with an Acknowledgement (ACK),
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(a) Multilateration algorithm (b) Solution based on Viterbi

Figure 4: Visual representation of the error distances in a 3D bar plot. The X and Y axes
represent the coordinates of the testbed (in cm) whilst the Z axis shows the error distance
(in m). Generally, error distances are higher at the edges of the test environment.

of which the time of arrival and RSSI is stored. In the w-iLab.t II testbed
an automated robot based on a Roomba vacuum cleaner was used to collect
the data, whereas in the hospital data collection at each evaluation point was
done manually after calibrating all evaluation points through laser measure-
ments.

4. Evaluation of the behavior of the error distances

Before investigating the impact of different numbers of evaluation points,
this section first discusses the behavior of the complete set of error distances
obtained at all evaluation points. Since the conclusions of this section are
similar for both evaluation environments, we will for now limit ourselves to
discussing the behavior of the localization systems in w-iLab.t II.

The error distances of both localization algorithms in the w-iLab.t II
evaluation environment are visualized in Figure 4. As expected, the Viterbi
solution on average has lower error distances due to the inclusion of historical
data in the algorithm. Furthermore, Figure 4 shows that generally the error
distances are larger at the edges of the area compared to the center of the
environment, a conclusion which is similar to [2].

To gain better insight in the behavior of the errors, a histogram of the er-
ror distances of the algorithms is shown in Figure 5. By evaluating multiple
possible distributions, it was found that the error distances of the multi-
lateration algorithm from Figure 5a matches best with a normal distribution
(X ~ N(p,0) with g = 10.46m and o = 5.36m). This is verified using
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Figure 5: Histogram of both the error distances in all available evaluation points with
corresponding matching distributions (5% significance level): the normal distribution for
the multilateration algorithm (a) and the Weibull distributions of the Viterbi algorithm

(b).

a x’-test (chi-square test), validating the null hypothesis that the error dis-
tances are distributed normally at a 5% significance level. However, the error
distances obtained by the Viterbi algorithm are lower, resulting in a shift of
the histogram bins to the left side, see Figure 5b. As a consequence, the re-
sulting distribution of the error distances does not fit a normal distribution
(the x2-test rejects the null hypotheses at a significance level of 5 %). In this
case, the best matching distribution is the Weibull distribution where the
probability density function is described as:

k—1
f) @M i >0,

k
flz A k) = X()\ (1)
0

ifz <0

whereby k& > 0 is the shape parameter and A > 0 is the scale parameter.
Since the Weibull distribution is more general than the normal distribution,
it can also be used to represent the normally distributed datasets from Fig-
ure 5a. However, in general normal distributions are preferred since they are
easier to work with due to their lower complexity. As such, the simplifica-
tion towards the normal distribution is only possible when the algorithm has
relatively large error distances.

In the remainder of this paper, the mean average error distance obtained
from this set of 203 evaluation points will be considered as the correct mean
error distance value of the evaluated solution. In other words, we assume that
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the mean value will not change if additional evaluation points are included.
This is a safe assumption since this amount of evaluation points is ten times
higher than typically used numbers of evaluation points (cf. 203 instead of a
typical value of 20 evaluation points).

Takeaway: e The distribution of the error distances for localization algo-
rithms can be represented by the Weibull distribution.

e The distribution of error distances for algorithms with larger
error distances can be simplified towards the normal distri-
bution (X ~ N(p,0)).

5. Impact of the number of evaluation points on the mean value
and the standard deviation

This section analyzes the impact of the number of evaluation points on
two statistical values: the mean and standard deviation of the reported error
distances. To illustrate the impact of the evaluation point selection pro-
cedure, Figure 6 plots the Cumulative Distribution Function (CDF) of the
average error for different subsets of 20 evaluation points. Depending on the
selected evaluation points subset, the reported median error distance varies
from around 5m up to almost 15m. This large variance of the possible CDF
plots shows that the amount of evaluation points can have a significant ef-
fect on the behavior of the reported error distances. Preferably, sufficient
evaluation points should be used so that adding more evaluation points, or
selecting a different subset of evaluation points, does no longer significantly
influence the behavior of the CDF.

In the following analysis, the collection of evaluation points is defined by
the variable X, whereas the corresponding error distances of this collection of
evaluation points is represented as e = f(X). Figure 7 shows a flowchart of
the steps executed to obtain the presented results. The process is divided in
two steps. First, Section 4 analyzed the statistics of the entire dataset using
all 203 evaluation points, resulting in an average error distance and variance
that is considered absolutely correct. Next, Section 5 calculates the statistics
of multiple smaller subsets of n evaluation points. For each n (n = [2,202]),
200 randomly selected subsets are used to calculate the reported mean error
distance and the variance of the error distance. This results in a matrix of
data for each statistical parameter, as shown in Figure 8.
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Figure 6: Multiple CDF plots for a subset of 20 evaluation points. Grey lines demonstrate

the CDF when using different subsets of evaluation points whilst the red line is the final
CDF when all 203 evaluation points are used.
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Figure 7: The flowchart of the data-processing. Section 4 discusses the error statistics
obtained by using all 203 evaluation points. Next, Section 5 presents the reported error
distance statistics when using random subsets of n evaluation points. The process of
selecting random evaluation points is repeated 200 times for each value of n.
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evaluation points, as shown later in respectively Figure 9 and Figure 10.
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5.1. Multilateration algorithm in w-iLab.t 11

Since most scientific papers report the average point error as their main
evaluation criteria, this section formulates an answer to the question “How
many evaluation points are required in order to obtain a reported mean value
which is close enough to the actual mean error distance?”. To answer this
question, it is important to evaluate the spread of the reported mean error for
different subsets of evaluation points. To this end, Figure 9 shows the spread
of the reported error as a function of the number of used evaluation points.
This graph is achieved by processing the data using Trace as depicted in
Figure 7. This results in a matrix that consists of mean values ¢; ;. The i-th
column represents the repetition ID whilst the j-th column represents the
number of used evaluation points. Figure 9 represents a boxplot of the mean
values off the vertical matrix entries ([€1,,6200,)). As expected, the spread
of the mean error distance is larger when the number of evaluation points is
low since more subset combinations are possible. A histogram of the spread
is also shown for n = 10, 30, 60, 100 and 190, as represented by the red lines.
x2-tests confirm that the spread of these histograms is normally distributed
as well.

Takeaway: The average reported error from random subsets of evaluation
points (with fixed n) can be represented using a normal distri-
bution.

Now that we know the spread and distribution of the reported average
error distance, it is possible to calculate the likelihood that an atypical sub-
set of n evaluation points is selected. To this end, we calculate the standard
deviation o of the reported mean error for different subsets of n evaluation
points. This standard deviation represents how many reported error dis-
tances are close to the mean value of the entire dataset. With e defined as
the error distance and N the number of used evaluation points, the standard
deviation of the complete dataset can be calculated using the Equation 2.

1 & 1 &
Oc = NZ‘ei_ﬂePWlthue:NZlei (2)

i=1
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Figure 9: Boxplots representing the spread of the mean error distances with different
subsets of evaluation points. Below the boxplots, histograms visualize the spread of re-
spectively n = 10, 30, 60, 100 and 190 evaluation points.
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However, this formula is only valid when collecting a “complete set” of
203 evaluation points, which is not the case when selecting smaller subsets
of n evaluation points. Therefore, the standard deviation o, is estimated by
examining a random sample taken from the complete dataset and computing
a statistic of the sample. This statistic is called an estimator, namely the
sample standard deviation s.. In order to calculate the value of this
estimator, Bessel’s correction [18] needs to be applied, resulting in Equation
3, with N representing the number of used evaluation points and € being the
sample mean.

The behavior of the standard deviation (o, see Figure 8 [B]) of the
reported mean error e is depicted in Figure 10. The standard deviation
decreases exponentially when the number of used evaluation points N in-
creases. In other words: the sample mean values are more stable and have
less variation if the amount of evaluation points increases. This demon-
strates that adding more evaluation points indeed lowers the risk of report-
ing an incorrect average error distance. However, the benefits of adding
evaluation points decreases over time. After a certain number of evalua-
tion points, the “cost” of adding additional evaluation points will not com-
pensate the “profit” of a lower standard deviation. This is also known as
the law of diminishing returns.

Based on the central limit theorem, the true standard deviation of the
mean values can be calculated as follows:

Oe

4
VN )
In this formula, o, is the true standard deviation of the entire dataset.

Again, when using only a subset of N evaluation points, an estimator can be
used for oz which is also known as the standard error of the mean (SEM):

Ué:

Se

5

VN ®)
In conclusion, it is possible to estimate the behavior of the standard de-
viation of the mean values for each value of n (n = [0, N]) by only using the

O’é%SEM:
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sample standard deviation of one single sample. This estimation is shown
in Figure 10 by the red curve, using estimator s, as the estimated standard
deviation based on a subset of 30 evaluation points. To be valid as an esti-
mator, the central limit theorem requires a “large” number of items for the
subset, typically 30 or more. Lower number of evaluation points can also be
used, but the resulting estimator can have higher shifts [19].

The estimator is sufficient if the complete set is considered as an infinite
set of evaluation points or if the complete set is unknown. However, as seen
in Figure 10, for large numbers of evaluation points the estimator no longer
corresponds to the standard deviation. This is because the estimator assumes
that the sample size is much smaller than the size of the complete dataset.
As such the estimator is no longer correct if the sample size is too large,
e.g. 100 or more in Figure 10. To obtain a better estimation also for larger
number of evaluation points, the estimator must be corrected by multiplying
a finite population correction (FPC)[20].

Se . N —n
N VN

oe~ SEM = (6)

Figure 11 demonstrates the effect of the finite population correction. The
estimator SEM approximate the true standard deviations using only two
parameters from the subset of evaluation points: the standard deviation of
the sample and the total amount of evaluation points. In the cases whereby
the total amount is unknown, only one single parameter will be sufficient.

Takeaway: e A higher standard deviation raises the possibility of retriev-
ing an atypical subset.

e The standard deviation of the mean values can be estimated
for each value of n using the standard deviation of the error
distances s, of one single subset.

5.2. Verification

We now can estimate the expected standard deviation of the mean values
using only a small subset of evaluation points using Equation 3. These for-
mulas were verified using the multilateration localization solution in w.iLab.t
IT. This section verifies if the formulas above also can be applied for other
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Figure 11: Standard deviation of the mean values of the error distances oz in combination
with the estimator SEM whereby the finite population correction is applied.

localization solutions and environments. To this end, the same analysis pro-
cedure was applied for the more advanced localization algorithm (Viterbi),
a different environment (hospital) and a different technology (WiFi). The
different localization solution combinations are explained in Section 3. For
completeness, all the standard deviations and mean values of the complete
dataset are listed in Table 2.

The relation between oz and & x Non

N—1
shown in Figure 12. These results show that a single experiment using 30
evaluation points can predict the true standard deviation in function of the
used amount of evaluation points. As such, this information can be used to
decide if adding additional evaluation points is necessary.

for each new configuration is

6. General guidelines

The main conclusion of Section 5 is the fact that the standard error can
be predicted based on the standard deviation of the mean values for subsets
with a different amount of evaluation points. This approximation can be used
to define general guidelines which can help an experimenter to (i) decide if
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Figure 12: Visualization of the calculated standard deviation of the mean values with the
standard error function. Also for different localization solutions and environments the
estimator performs well. In all cases, s. is the standard deviation of 30 error distances,
selected randomly in the environment.
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Table 2: Summary of the statistical results. All available mean p and standard deviations
o are summarized in this table. These numbers are calculated using the entire dataset of
203 evaluation points (w.iLab.t II) or 73 evaluation points (hospital).

Algorithm  Technology w-iLab.t 1T [m] Hospital [m]
/’Le O-e /"Le 0-6
Wifi 10.77 5.79 2.68 1.37
Multilateratidigbee 10.46 5.36 3.08 1.64
BLE n.a. n.a. 3.12 1.51
Viterbi Zigbee 4.35 2.76 n.a. n.a.

additional evaluation points should be considered and (ii) derive confidence

levels for the reported error results.
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Guidelines for determining the necessary number of evaluation

points:

Step 1

Step 2

Step 3

Step 4

Step 5

Select as randomly and independently as possible N = 20
evaluation points in the chosen test environment.

Calculate the mean value ey and the standard deviation
se v of the dataset.

Calculate the current confidence interval based on these
statistics:

Se,N

VN

[@N —1.96 % 2N an +1.96 * SG’N} (7)

VN

Define the desired confidence bounds CB (ey £ CB) and
calculate the amount of evaluation points N’ needed:

, (196 % s,y 2
N—(—CB ) ®)

Go back to Step 1 with N = N’ and verify that the confi-
dence bounds are changed.

The guidelines consist of 5 steps.

this confidence level.
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Rather than enforcing a minimum
number of evaluation points, the guidelines assume that the experimenter
wants at least a confidence bound on their reported results, expressed as
the maximum uncertainty in meters.
guidelines will predict how many evaluation points are required to achieve
The actual confidence level can be selected by the

Based on this confidence level, the



experimenter depending on available experimentation time or required overall
accuracy of the results.

To illustrate the guidelines, the process has been applied to all algorithms,
environments and technology combinations discussed in Section 3. The re-
sults for each configuration are presented in Table 3 using a confidence bound
of 1m. To achieve this confidence level, the number of required evaluation
points varies strongly, ranging from 20 up to 109 required evaluation points.
These outcomes demonstrate that the minimum number of required evalua-
tion points depends strongly on the actual localization solution. However, by
following the guidelines, every localization solution combination achieved a
confidence interval whereby the “estimated mean value” . finds itself within
the given confidence bounds.

Takeaway: e Guidelines are given to determine the number of evalua-
tion points required to report mean errors within a desired
confidence interval.

e The number of evaluation points required depends on the
specifics of the localization solution (i.e. the algorithm,
technology, etc.) and the test environment. However, the
guidelines can be applied to any combination of technolo-
gies, algorithms and environments.

7. Conclusions and future work

In current scientific literature, evaluation procedures for analyzing the
performance of localization solutions are often still lacking. Since evaluating
a localization solution is time consuming, in many cases the reported accuracy
results are obtained using a limited number of evaluation points. Based on
current evaluation procedures, it is not possible to identify if the resulting
accuracy reports are trustworthy or not. Although some results are probably
reliable, the lack of analysis on the confidence levels of these reported results
makes it very difficult to identify which of these reports can be trusted and
to compare these objectively. To remedy these shortcomings, this paper
studied the behavior of reported error distances, as well as the influence of
the number of evaluation points on the reported accuracy.

First, a study on the behavior of the error distances shows that the his-
togram of error distances can be represented using a Weibull distribution. If
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of necessary evaluation points depends on the combination of the selected algorithm, tech-
nology and environment. It also depends on the desired confidence bounds of the mean

Table 3: Applying the guidelines on the multiple datasets of error distances. The amount
value. In this example, a confidence bound of 1 m was chosen.

28



the algorithm has larger error distances, this distribution can be simplified to-
wards a normal distribution. Next, the impact of using subsets of evaluation
points was investigated. It was shown that, within a subset of n evaluation
points, the reported mean distance can vary strongly, with reported mean
errors for some algorithms varying between 5m and 15m, even when using 20
evaluation points. It was also shown that the reported accuracy behaves as
a normal distribution with decreasing variance for larger numbers of evalua-
tion points. Not only do we prove mathematically that the confidence of the
reported means increases when using additional evaluation points, we also
quantify by how much. More specifically, the paper shows it is possible to
estimate the standard deviation of the mean value for a certain amount of
evaluation points using the standard error of the mean value. Finally, easy to
follow guidelines are given to calculate the confidence one has in the reported
mean error, as well as to calculate how many additional evaluation points
are required to meet predefined confidence levels.

The work presented in this paper will allow researchers to more accurately
calculate the confidence they have in their reported work, and will allow
them to make informed choices regarding the number of required evaluation
points. As such, it signifies a large step forward towards more standardized
evaluation methods for localization solutions.
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