20 research outputs found

    Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity

    Get PDF
    Background: Nor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor. Methods To evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS). Results: In each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism. Conclusions: The negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes

    Selective κ Opioid Antagonists nor-BNI, GNTI and JDTic Have Low Affinities for Non-Opioid Receptors and Transporters

    Get PDF
    Background: Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. Results: In binding assays, the three antagonists showed no detectable affinity (Ki≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (Ki = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (KB = 3.7 µM). JDTic bound to the noradrenaline transporter (Ki = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (Ki = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. Conclusions: Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTI's severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists

    Tracking Down the Molecular Substrates of Stress: New Roles for p38α MAPK and Kappa-Opioid Receptors

    Get PDF
    In this issue, Bruchas et al. (2011) uncover a novel stress-induced p38α MAPK signaling cascade within serotonergic neurons of the dorsal raphe nucleus that mediates depressive and drug-seeking behaviors. Their findings have potentially important implications for medication development

    Binding affinities of nor-BNI, GNTI and JDTic for 46 neurotransmitter receptors and transporters, determined by radioligand displacement.

    No full text
    <p>Submicromolar affinities are shown in bold; blank cells indicate <i>K</i><sub>i</sub>≥10 µM. For details (uncertainty, radioligand, membrane type, species), see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070701#pone.0070701.s007" target="_blank">Table S1</a>. For binding curves, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070701#pone.0070701.s006" target="_blank">File S1</a>.</p

    GNTI enhances maximal Ca<sup>2+</sup> mobilization by noradrenaline at α<sub>1A</sub>-AR without affecting potency (A); maximal PI hydrolysis is not increased (B).

    No full text
    <p>Some intermediate curves have been omitted for clarity. Error bars represent mean ± S.E.M. For raw data, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070701#pone.0070701.s001" target="_blank">Datasets S1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070701#pone.0070701.s002" target="_blank">S2</a>.</p
    corecore