11 research outputs found

    Epidemiology of paediatric renal stone disease in the UK

    No full text
    Background: The previous epidemiological study of paediatric nephrolithiasis in Britain was conducted more than 30 years ago. Aims: To examine the presenting features, predisposing factors, and treatment strategies used in paediatric stones presenting to a British centre over the past five years. Methods: A total of 121 children presented with a urinary tract renal stone, to one adult and one paediatric centre, over a five year period (1997–2001). All children were reviewed in a dedicated stone clinic and had a full infective and metabolic stone investigative work up. Treatment was assessed by retrospective hospital note review. Results: A metabolic abnormality was found in 44% of children, 30% were classified as infective, and 26% idiopathic. Bilateral stones on presentation occurred in 26% of the metabolic group compared to 12% in the infective/idiopathic group (odds ratio 2.7, 95% CI 1.03 to 7.02). Coexisting urinary tract infection was common (49%) in the metabolic group. Surgically, minimally invasive techniques (lithotripsy, percutaneous nephrolithotomy, and endoscopy) were used in 68% of patients. Conclusions: There has been a shift in the epidemiology of paediatric renal stone disease in the UK over the past 30 years. Underlying metabolic causes are now the most common but can be masked by coexisting urinary tract infection. Treatment has progressed, especially surgically, with sophisticated minimally invasive techniques now employed. All children with renal stones should have a metabolic screen

    Characterization of renal chloride channel (CLCN5) mutations in Dent's disease.

    No full text
    Dent's disease is an X-linked renal tubular disorder characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and renal failure. The disease is caused by mutations in a renal chloride channel gene, CLCN5, which encodes a 746 amino acid protein (CLC-5), with 12 to 13 transmembrane domains. In this study, an additional six unrelated patients with Dent's disease were identified and investigated for CLCN5 mutations by DNA sequence analysis of the 11 coding exons of CLCN5. This revealed six mutations: four frameshift deletions involving codons 392, 394, 658, and 728, one nonsense mutation (Tyr617Stop), and an A to T transversion at codon 601 that would result in either a missense mutation (Asp601Val) or creation of a novel donor splice site. These mutations were confirmed by restriction endonuclease or sequence-specific oligonucleotide hybridization analysis and were not common polymorphisms. The frameshift deletions and nonsense mutation predict truncated and inactivated CLC-5. The effects of the putative missense Asp601Val mutant CLC-5 were assessed by heterologous expression in Xenopus oocytes, and this revealed a chloride conductance that was similar to that observed for wild-type CLC-5. However, an analysis of the mutant CLCN5 transcripts revealed utilization of the novel donor splice site, resulting in a truncated CLC-5. Thus, all of the six mutations are likely to result in truncated CLC-5 and a loss of function, and these findings expand the spectrum of CLCN5 mutations associated with Dent's disease

    Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects.

    No full text
    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue

    Pediatric urolithiasis: causative factors, diagnosis and medical management

    No full text
    Childhood urolithiasis is associated with considerable morbidity and recurrence. Many risk factors-including those metabolic, genetic, anatomic, dietary and environmental in nature-have been identified in children with urinary tract calculi. As pediatric urolithiasis with a metabolic etiology is the most common disease, evaluating the metabolic risk factors in patients is necessary to both effectively treat current stones and prevent recurrence. We discuss causative risk factors of pediatric urolithiasis, as well as the diagnostic and therapeutic approaches

    Urinary tract effects of HPSE2 mutations

    No full text
    Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS
    corecore