88 research outputs found

    Effects of Hot Isostatic Pressing on the Properties of Laser-Powder Bed Fusion Fabricated Water Atomized 25Cr7Ni Stainless Steel

    Get PDF
    25Cr7Ni stainless steel (super duplex stainless steels) exhibits a duplex microstructure of ferrite and austenite, resulting in an excellent combination of high strength and corrosion resistance. However, Laser-Powder Bed Fusion fabrication of a water-atomized 25Cr7Ni stainless steel of novel chemical composition resulted in a purely ferritic microstructure and over 5% porosity. The current study investigated the effects of two hot isostatic pressing parameters on the physical, mechanical, and corrosion properties as well as microstructures of water-atomized 25Cr7Ni stainless steel of novel composition fabricated by L-PBF for the first time in the literature. The corrosion behaviour was studied using linear sweep voltammetry in a 3.5% NaCl solution. The Hot Isostatic Pressing-treated sample achieved over 98% densification with a corresponding reduction in porosity to less than 0.1% and about 3 similar to 4% in annihilation of dislocation density. A duplex microstructure of ferrite 60% and austenite 40%was observed in the X-Ray Diffraction and etched metallography of the HIP-treated samples from a purely ferritic microstructure prior to the HIP treatment. With the evolution of austenite phase, the HIP-treated samples recorded a decrease in Ultimate Tensile Strength, yield strength, and hardness in comparison with as-printed samples. The variation in the morphology of the evolved austenite grains in the HIP-treated samples was observed to have a significant effect on the elongation. With a reduction in porosity and the evolution of the austenite phase, the HIP-treated samples showed a higher corrosion resistance in comparison with the as-printed samples

    Characteristics of CVD Grown Diamond Films on Langasite Substrates

    Get PDF
    Surface acoustic wave (SAW) devices consist of a piezoelectric substrate with interdigitated (IDT) electrodes. These devices can be used to fabricate wireless and passive sensors that can be mounted in remote and/or inaccessible places. If encapsulated with CVD diamond, the SAW devices can be made to operate under extremely hostile conditions. The piezoelectric layer (AlN, ZnO etc.) deposited on the diamond or an inverse system can increase the frequency of the SAW device. Most piezoelectric materials (such as quartz) show phase transition temperatures below diamond deposition temperature (650º-1100ºC), preventing their use as a substrate for diamond growth. Langasite La3Ga5SiO14 (LGS) is recently fabricated piezoelectric material that can withstand high temperatures without being deteriorated. LGS does not have phase transitions up to its melting point of 1470°C.Here we report the deposition of diamond films by microwave plasma CVD in methane-hydrogen gas mixtures on polished and rough surfaces of the LGS substrates seeded with nanodiamonds. No buffer layer between the substrate and the coating had been used. The effect of substrate pretreatment (PT) was also investigated on the growth behaviour of diamond films on LGS. The resulting films are characterised by Raman spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS). The effect of substrate roughness on the growth behaviour was found to favour bigger grain sizes on the unpolished substrates. Whereas, the effect of substrate pretreatment (PT) was found to produce unique microstructural features with better polycrystalline diamond (PCD) quality than on the substrates without PT. Raman signals confirm the deposition of PCD in all the cases but the X-ray results interestingly show new phase formation of hcp and rhombohedral diamond lattice structures under CVD growth environment

    Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite

    Get PDF
    Laser-engineered net shaping (LENS (TM)), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222 +/- 12 mu m to 355 +/- 6 mu m, while the average surface hardness decreased marginally from 403 +/- 18 HV03 to 372 +/- 8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. (C) 2013 Elsevier B.V. All rights reserved

    In-vitro corrosion and biocompatibility properties of heat treated Mg-4Y-2.25Nd-0.5Zr alloy

    No full text
    In this study, corrosion and biocompatibility behaviour of Mg-4Y-2.25Nd-0.5Zr alloy (Mg-Y-Nd-Zr) was inves-tigated. The pre-alloyed powder of Mg-Y-Nd-Zr was processed using powder metallurgy (PM) method, followed by further heat treatment at 250 degrees C for 12 h. The microstructural features of as-sintered and heat treated Mg-Y-Nd-Zr alloy showed secondary phases like Mg24Y5 and Mg41Nd5 in alpha-Mg matrix. In heat treated samples, the alloy showed improved compressive strength and hardness. The hardness and compressive strength was better for the heat treated Mg-Y-Nd-Zr alloy samples (54 +/- 2 HV and 243 +/- 30 MPa) compared to heat treated pure Mg samples (44 +/- 5 HV and 129 +/- 11 MPa). This is because of rearrangement of the secondary phases in the matrix. The corrosion current density of Mg-Y-Nd-Zr alloy samples reduced by 45% (82.2 mu A/cm2 for heat treated and 149.3 mu A/cm2 for as-sintered) after heat treatment indicating its better corrosion resistance than as-sintered samples. Both heat treated and as-sintered alloy exhibited good biocompatibility and therefore the Mg-Y-Nd-Zr alloy is a potential candidate for biodegradable implants

    Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    No full text
    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. (C) 2014 Elsevier B.V. All rights reserved

    In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications

    No full text
    Magnesium (Mg) and its alloys have been widely explored as a potential biodegradable implant material. However, the fast degradation of Mg-based alloys under physiological environment has hindered their widespread use for implant applications till date. The present review focuses on in vitro and in vivo degradation of biodegradable Mg alloys, and preventive measures for biomedical applications. Initially, the corrosion assessment approaches to predict the degradation behavior of Mg alloys are discussed along with the measures to control rapid corrosion. Furthermore, this review attempts to explore the correlation between in vitro and in vivo corrosion behavior of different Mg alloys. It was found that the corrosion depends on experimental conditions, materials and the results of different assessment procedures hardly matches with each other. It has been demonstrated the corrosion rate of magnesium can be tailored by alloying elements, surface treatments and heat treatments. Various researches also studied different biocompatible coatings such as dicalcium phosphate dihydrate (DCPD), beta-tricalcium phosphate (beta-TCP), hydroxyapatite (HA), polycaprolactone (PCL), polylactic acid (PLA), and so on, on Mg alloys to suppress rapid degradation and examine their influence on new bone regeneration as well. This review shows the need for a standard method of corrosion assessment to predict the in vivo corrosion rate based on in vitro data, and thus reducing the in vivo experimentation

    Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy

    No full text
    Pure Mg and prealloyed Mg-Gd-Nd-Zr-Zn alloy samples were prepared using powder metallurgy route and further heat treated. The effects of heat treatment on the microstructure, mechanical , corrosion resistance and biocompatibility properties of these samples were investigated. Microstructural analysis showed alpha-Mg matrix with secondary phases like Mg3Gd/Nd, Mg12Gd/Nd and Mg41Nd5 in the Mg alloy. After heat treatment, 250 degrees C for 12 h, both samples showed improvement in the hardness and compressive strength due to rearrangement of the secondary phases and grains. However, the hardness and compressive strength of Mg alloy (54 +/- 5 HV and 239 +/- 23 MPa) was higher than pure Mg, which were further improved with heat treatment (61 +/- 4 HV and 260 +/- 21 MPa). The corrosion potential of Mg alloy was more positive (-1.51V) than pure Mg (-1.61V) signifying its better resistance to corrosion initiation. However, the Mg alloy exhibited higher corrosion current than pure Mg due to galvanic effect of secondary phases. In vitro tissue culture experiments demonstrated good biocompatibility of both samples and therefore present high strength Mg alloy can be better choice as biodegradable implants. (C) 2019 Elsevier B.V. All rights reserved

    Direct laser processing of a tantalum coating on titanium for bone replacement structures

    No full text
    Recently tantalum is gaining more attention as a new metallic biomaterial as it has been shown to be bioactive and biologically bonds to bone. However, the relatively high cost of manufacture and an inability to produce a modular all Ta implant has limited its widespread acceptance. In this study we have successfully deposited a Ta coating on Ti using laser engineered net shaping (LENS™) to enhance the osseointegration properties. In vitro biocompatibility study, using human osteoblast cell line hFOB, showed excellent cellular adherence and growth with abundant extracellular matrix formation on the Ta coating surface compared with the Ti surface. A six times higher living cell density was observed on the Ta coating than on the Ti control surface by MMT assay. A high surface energy and wettability of the Ta surface were observed to contribute to its significantly better cell–material interactions. Also, these dense Ta coatings do not suffer from low fatigue resistance due to the absence of porosity and a sharp interface between the coating and the substrate, which is a major concern for porous coatings used for enhanced/early biological fixation
    • …
    corecore