282 research outputs found

    Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry

    Get PDF
    AbstractHeparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed, isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell–cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines

    A novel role for phagocytosis-like uptake in herpes simplex virus entry

    Get PDF
    It is becoming increasingly clear that herpesviruses can exploit the endocytic pathway to infect cells, yet several important features of this process remain poorly defined. Using herpes simplex virus-1 (HSV-1) as a model, we demonstrate that endocytosis of the virions mimic many features of phagocytosis. During entry, HSV-1 virions associated with plasma membrane protrusions followed by a phagocytosis-like uptake involving rearrangement of actin cytoskeleton and trafficking of the virions in large phagosome-like vesicles. RhoA GTPase was activated during this process and the mode of entry was cell type–specific. Clathrin-coated vesicles had no detectable role in virion trafficking as Eps15 dominant-negative mutants failed to affect HSV-1 uptake. Binding and fusion of the virion envelope with the phagosomal membrane is likely facilitated by clustering of nectin-1 (or HVEM) in phagosomes, which was observed in infected cells. Collectively, our data suggests a novel mode of uptake by which the virus can infect both professional and nonprofessional phagocytes

    Anti-heparan Sulfate Peptides That Block Herpes Simplex Virus Infection in Vivo

    Get PDF
    Heparan sulfate (HS) and its highly modified form, 3-O-sulfated heparan sulfate (3-OS HS), contribute strongly to herpes simplex virus type-1 (HSV-1) infection in vitro. Here we report results from a random M13-phage display library screening to isolate 12-mer peptides that bind specifically to HS, 3-OS HS, and block HSV-1 entry. The screening identified representative candidates from two-different groups of anti-HS peptides with high positive charge densities. Group 1, represented by G1 peptide (LRSRTKIIRIRH), belongs to a class with alternating charges (XRXRXKXXRXRX), and group 2, represented by G2 peptide (MPRRRRIRRRQK), shows repetitive charges (XXRRRRXRRRXK). Viral entry and glycoprotein D binding assays together with fluorescent microscopy data indicated that both G1 and G2 were potent in blocking HSV-1 entry into primary cultures of human corneal fibroblasts and CHO-K1 cells transiently expressing different glycoprotein D receptors. Interestingly, G2 peptide isolated against 3-OS HS displayed wider ability to inhibit entry of clinically relevant strains of HSV-1 and some divergent members of herpesvirus family including cytomegalovirus and human herpesvirus-8. To identify functional residues within G1 and G2, we performed point mutations and alanine-scanning mutagenesis. Several arginine and a lysine residues were needed for anti-HSV-1 activity, suggesting the importance of the positively charged residues in virus-cell binding and virus-induced membrane fusion. In vivo administration of G1 or G2 peptide as a prophylactic eye drop completely blocked HSV-1 spread in the mouse cornea as evident by immunohistochemistry. This result also highlights an in vivo significance of HS and 3-OS HS during ocular herpes infection

    Immunology and Microbiology An Investigative Peptide-Acyclovir Combination to Control Herpes Simplex Virus Type 1 Ocular Infection

    Get PDF
    PURPOSE. To investigate the efficacy of a combination treatment composed of the cationic, membrane-penetrating peptide G2, and acyclovir (ACV) in both in vitro and ex vivo models of herpes simplex virus 1 (HSV-1) ocular infection. METHODS. The antiviral activity of a combined G2 peptide and ACV therapy (G2-ACV) was assessed in various treatment models. Viral entry, spread, and plaque assays were performed in vitro to assess the prophylactic efficacy of G2, G2-ACV, and ACV treatments. In the ex vivo model of HSV-1 infection, the level of viral inhibition was also compared among the three treatment groups via Western blot analysis and immunohistochemistry. The potential change in expression of the target receptor for G2 was also assessed using immunohistochemistry and RT-PCR. RESULTS. Statistically significant effects against HSV-1 infection were seen in all treatment groups in the viral entry, spread, and plaque assays. The greatest effects against HSV-1 infection in vitro were seen in the G2-ACV group. In the ex vivo model, statistically significant anti-HSV-1 effects were also noted in all control groups. At 24 hours, the greatest inhibitory effect against HSV-1 infection was seen in the ACV group. At 48 hours, however, the G2-ACVtreated group demonstrated the greatest antiviral activity. Syndecan-1, a target of G2, was found to be upregulated at 12-hours postinfection. CONCLUSIONS. This study shows that G2-ACV may be an effective antiviral against HSV-1 (KOS) strain when applied as single prophylactic applications with or without continuous doses postinfection. Keywords: herpes simplex keratitis, heparan sulfate, acyclovir H erpes simplex virus is an enveloped, double-stranded DNA virus and a member of Alphaherpesvirinae, a subfamily of Herpesviridae. Of the three members of this subfamily, which include herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), and varicella zoster virus (VZV), HSV-1 has the greatest association with ocular infection. 1 With approximately 8.4 to 13.2 new cases per 100,000 people per year, HSV-1 is actually the main cause of infectious blindness in developed countries. 2 In the United States, approximately 500,000 individuals are afflicted with HSV ocular infection, with treatment costs rising to US$ 17.7 million annually for initial onset and recurring cases. 2,3 Ocular manifestations of HSV-1 include iridocyclitis, acute retinal necrosis, conjunctivitis, and keratitis. 1 Current mainstay treatment options against ocular HSV-1 infection include a dual regimen consisting of topical antivirals and topical corticosteroids. Prior work in our laboratory has yielded two 12-mer peptides with antiviral activity against HSV-1. The mechanism of action of these peptides rely on binding specifically to heparan sulfate (HS) and a modified form of HS, 3-O-sulfated HS (3-OS HS), both of which serve as entry receptors for HSV-1 on many different cell lines, including human corneal epithelial (HCE) cells. The peptides G1 (LRSRTKIIRIRH) and G2 (MPRRRRIRRRQK) both have high positive charge densities, and specific arginine and lysine residues are necessary to inhibit virus-cell binding and virus-induced membrane fusion. 7 In addition to inhibitory effects on HSV-1 entry into primary cultures of human corneal fibroblasts, both peptides have been demonstrated to effectively serve as prophylactic eye drops in an in vivo murine corneal model

    Infected Cell Protein (ICP)47 Enhances Herpes Simplex Virus Neurovirulence by Blocking the CD8+ T Cell Response

    Get PDF
    The herpes simplex virus (HSV) infected cell protein (ICP)47 blocks CD8+ T cell recognition of infected cells by inhibiting the transporter associated with antigen presentation (TAP). In vivo, HSV-1 replicates in two distinct tissues: in epithelial mucosa or epidermis, where the virus enters sensory neurons; and in the peripheral and central nervous system, where acute and subsequently latent infections occur. Here, we show that an HSV-1 ICP47− mutant is less neurovirulent than wild-type HSV-1 in mice, but replicates normally in epithelial tissues. The reduced neurovirulence of the ICP47− mutant was due to a protective CD8+ T cell response. When compared with wild-type virus, the ICP47− mutant expressed reduced neurovirulence in immunologically normal mice, and T cell–deficient nude mice after reconstitution with CD8+ T cells. However, the ICP47− mutant exhibited normal neurovirulence in mice that were acutely depleted of CD8+ T cells, and in nude mice that were not reconstituted, or were reconstituted with CD4+ T cells. In contrast, CD8+ T cell depletion did not increase the neurovirulence of an unrelated, attenuated HSV-1 glycoprotein (g)E− mutant. ICP47 is the first viral protein shown to influence neurovirulence by inhibiting CD8+ T cell protection

    Role for 3-O-Sulfated Heparan Sulfate as the Receptor for Herpes Simplex Virus Type 1 Entry into Primary Human Corneal Fibroblasts

    Get PDF
    Herpes simplex virus type 1 (HSV-1) infection of the corneal stroma remains a major cause of blindness. Primary cultures of corneal fibroblasts (CF) were tested and found susceptible to HSV-1 entry, which was confirmed by deconvolution imaging of infected cells. Plaque assay and real-time PCR demonstrated viral replication and hence a productive infection of CF by HSV-1. A role for glycoprotein D (gD) receptors in cultured CF was determined by gD interference assay. Reverse transcription-PCR analysis indicated expression of herpesvirus entry mediator and 3-O-sulfated (3-OS) heparan sulfate (HS)-generating enzyme 3-O sulfotransferase 3 (3-OST-3) but not nectin-1 or nectin-2. Subsequently, HS isolated from these cells was found to contain two distinct disaccharides (IdoUA2S-AnMan3S and IdoUA2S-AnMan3S6S) that are representative of 3-OST-3 activity. The following lines of evidence supported the important role of 3-OS HS as the mediator of HSV-1 entry into CF. (i) Blockage of entry was observed in CF treated with heparinases. The same enzymes had significantly less effect on HeLa cells that use nectin-1 as the entry receptor. (ii) Enzymatic removal of cell surface HS also removed the major gD-binding receptor, as evident from the reduced binding of gD to cells. (iii) Spinoculation assay demonstrated that entry blockage by heparinase treatment included the membrane fusion step. (iv) HSV-1 glycoprotein-induced cell-to-cell fusion was inhibited by either prior treatment of cells with heparinases or by HS preparations enriched in 3-OS HS. Taken together, the data in this report provide novel information on the role of 3-OS HS in mediating infection of CF, a natural target cell type
    • …
    corecore