720 research outputs found

    Foundations of multiple black hole evolutions

    Get PDF
    We present techniques for long-term, stable, and accurate evolutions of multiple-black-hole spacetimes using the `moving puncture' approach with fourth- and eighth-order finite difference stencils. We use these techniques to explore configurations of three black holes in a hierarchical system consisting of a third black hole approaching a quasi-circular black-hole binary, and find that, depending on the size of the binary, the resulting encounter may lead to a prompt merger of all three black holes, production of a highly elliptical binary (with the third black hole remaining unbound), or disruption of the binary (leading to three free black holes). We also analyze the classical Burrau three-body problem using full numerical evolutions. In both cases, we find behaviors distinctly different from Newtonian predictions, which has important implications for N-body black-hole simulations. For our simulations we use analytic approximate data. We find that the eighth-order stencils significantly reduce the numerical errors for our choice of grid sizes, and that the approximate initial data produces the expected waveforms (after a rescaling of the puncture masses) for black-hole binaries with modest initial separations.Comment: Revtex 4, 13 pages, 15 figure

    Leaded tin bronzes: the effects of casting method on dry sliding behaviour

    Get PDF
    In metal-to-metal sliding bearing applications, leaded tin bronzes are widely known as materials with excellent seizure resistance. In conditions of boundary or dry lubrication, lead may smear across the sliding surface, preventing surface contact and catastrophic seizure. The aim of this study was to determine the effects of casting method on the dry sliding behaviour of leaded tin bronzes. Continuous cast, centrifugally cast, and sand cast leaded tin bronze samples with varying lead contents were subjected to pin-on-disk- testing. It was found that casting method has a significant effect on the wear behaviour of leaded tin bronzes in dry sliding conditions. With continuous cast samples, the dominant wear mode was rapid, stable microcracking along copper/lead interfacial boundaries. With centrifugally and sand cast samples, wear occurred more slowly and erratically through the formation of transfer layers. The dominant wear mode was found to be connected to the coarseness of the distribution of lead particles in the copper matrix

    Capture of dark matter by the Solar System

    Full text link
    We study the capture of galactic dark matter by the Solar System. The effect is due to the gravitational three-body interaction between the Sun, one of the planets, and a dark matter particle. The analytical estimate for the capture cross-section is derived and the upper and lower bounds for the total mass of the captured dark matter particles are found. The estimates for their density are less reliable. The most optimistic of them give an enhancement of dark matter density by about three orders of magnitudes compared to its value in our Galaxy. However, even this optimistic value remains below the best present observational upper limits by about two orders of magnitude.Comment: 5 pages, 3 tables; Refs. updated and discussion extende

    Approximate action-angle variables for the figure-eight and other periodic three-body orbits

    Full text link
    We use the maximally permutation symmetric set of three-body coordinates, that consist of the "hyper-radius" R=ρ2+λ2R = \sqrt{\rho^{2} + \lambda^{2}}, the "rescaled area of the triangle" 32R2âˆŁÏĂ—Î»âˆŁ\frac{\sqrt 3}{2 R^2} |{\bm \rho} \times {\bm \lambda}|) and the (braiding) hyper-angle ϕ=arctan⁥(2ρ⋅λλ2−ρ2)\phi = \arctan(\frac{2{\bm \rho} \cdot {\bm \lambda}}{\lambda^2 - \rho^2}), to analyze the "figure-eight" choreographic three-body motion discovered by Moore \cite{Moore1993} in the Newtonian three-body problem. Here ρ,λ{\bm \rho}, {\bm \lambda} are the two Jacobi relative coordinate vectors. We show that the periodicity of this motion is closely related to the braiding hyper-angle ϕ\phi. We construct an approximate integral of motion Gˉ{\bar{G}} that together with the hyper-angle ϕ\phi forms the action-angle pair of variables for this problem and show that it is the underlying cause of figure-eight motion's stability. We construct figure-eight orbits in two other attractive permutation-symmetric three-body potentials. We compare the figure-eight orbits in these three potentials and discuss their generic features, as well as their differences. We apply these variables to two new periodic, but non-choreographic orbits: One has a continuously rising ϕ\phi in time tt, just like the figure-eight motion, but with a different, more complex periodicity, whereas the other one has an oscillating ϕ(t)\phi(t) temporal behavior.Comment: 11 pages, 19 figure

    Dark energy domination in the Virgocentric flow

    Full text link
    The standard \LambdaCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we focus now on the Virgo Cluster and the flow of expansion around it. We interpret the Hubble diagram, from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Our conclusions are: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances \ga 15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, due to the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.Comment: 7 pages, 2 figures, Astronomy and Astrophysics (accepted
    • 

    corecore