15 research outputs found

    Thermogravimetric kinetics of crude glycerol.

    No full text
    The pyrolysis of the crude glycerol from a biodiesel production plant was investigated by thermogravimetry coupled with Fourier transform infrared spectroscopy. The main gaseous products are discussed, and the thermogravimetric kinetics derived. There were four distinct phases in the pyrolysis process of the crude glycerol. The presence of water and methanol in the crude glycerol and responsible for the first decomposition phase, were shown to catalyse glycerol decomposition (second phase). Unlike the pure compound, crude glycerol decomposition below 500 K leaves behind a large mass fraction of pyrolysis residues (ca. 15%), which eventually partially eliminate in two phases upon reaching significantly higher temperatures (700 and 970 K, respectively). An improved iterative Coats-Redfern method was used to evaluate non-isothermal kinetic parameters in each phase. The latter were then utilised to model the decomposition behaviour in non-isothermal conditions. The power law model (first order) predicted accurately the main (second) and third phases in the pyrolysis of the crude glycerol. Differences of 10-30 kJ/mol in activation energies between crude and pure glycerol in their main decomposition phase corroborated the catalytic effect of water and methanol in the crude pyrolysis. The 3-D diffusion model more accurately reproduced the fourth (last) phase, whereas the short initial decomposition phase was poorly simulated despite correlation coefficients ca. 0.95-0.96. The kinetics of the 3rd and 4th decomposition phases, attributed to fatty acid methyl esters cracking and pyrolysis tarry residues, were sensitive to the heating rate

    Computational Fluid Dynamics Simulation of Gas-Solid Flow during Steam Reforming of Glycerol in a Fluidized Bed Reactor

    No full text
    A computational fluid dynamics simulation of gas-solid flow in a fluidized bed reactor was performed to investigate the steam reforming of glycerol using a three-step reaction scheme, motivated by the worldwide increase of crude glycerol produced by the transesterification of vegetable oil into biodiesel. The Eulerian-Eulerian two-fluid approach was adopted to simulate hydrodynamics of fluidization, and chemical reactions were modeled by the laminar finite-rate model. The gas-solid system exhibited a more heterogeneous structure. Clusters were observed to fall and stack together along the wall, and the process of wall slug formation was very evident. This suggests the bed should be agitated to maintain satisfactory fluidizing conditions. The results showed that the glycerol conversion increased with increasing reaction time, and most of the gas products-H2, CO2, CH4, and CO-were formed during the initial 2 s. The prediction of the gas-solid phase flows and mixing, glycerol conversion, and products distribution will provide helpful data to design and operate a bench-scale catalytic fluidized bed reactor
    corecore