3 research outputs found

    Fluoxetine can make marine organisms unhappy: a study on the sub-lethal effects on marine invertebrates

    Get PDF
    The environmental effects caused by selective serotonin reuptake inhibitor drugs have been investigated for marine organisms and coastal ecosystems but are scarce in neotropical organisms. This investigation aimed to evaluate the sublethal effects of fluoxetine on the embryonic development of the sea urchin Echinometra lucunter and the survival and swimming behavior of the brine shrimp Artemia sp. The organisms were exposed to four different concentrations of fluoxetine (30, 300, 3000 and 30000 ng L-1) and to a negative control (filtered seawater), following the respective standard testing protocols. We verified a significant reduction of the embryos development to pluteus larvae, starting from 3000 ng L-1 (54.0±10.9% normal larvae), in comparison with the controls (83.5±3.1%). The non-observed effect concentration (NOEC) was estimated at 300 ng L-1, and the lowest observed effect concentration (LOEC) was 3000 ng L-1. In the behavior tests with Artemia sp, no significant adverse effects were reported for mobility, swimming speed and inactivity time. These results show that Fluoxetine can interfere on the development of species like the sea urchin E. lucunter, but short term exposure did not affected the swimming behavior of the brine shrimp Artemia sp. Fluoxetine presents thus a potential to affect marine biota and disrupt the equilibrium of the coastal ecosystems

    Mare Incognitum: A Glimpse into Future Plankton Diversity and Ecology Research

    Get PDF
    With global climate change altering marine ecosystems, research on plankton ecology is likely to navigate uncharted seas. Yet, a staggering wealth of new plankton observations, integrated with recent advances in marine ecosystem modeling, may shed light on marine ecosystem structure and functioning. A EuroMarine foresight workshop on the “Impact of climate change on the distribution of plankton functional and phylogenetic diversity” (PlankDiv) identified five grand challenges for future plankton diversity and macroecology research: (1) What can we learn about plankton communities from the new wealth of high-throughput “omics” data? (2) What is the link between plankton diversity and ecosystem function? (3) How can species distribution models be adapted to represent plankton biogeography? (4) How will plankton biogeography be altered due to anthropogenic climate change? and (5) Can a new unifying theory of macroecology be developed based on plankton ecology studies? In this review, we discuss potential future avenues to address these questions, and challenges that need to be tackled along the way
    corecore