18 research outputs found

    A dual-time-window protocol to reduce acquisition time of dynamic tau PET imaging using [F-18]MK-6240

    Get PDF
    Background [F-18]MK-6240 is a PET tracer with sub-nanomolar affinity for neurofibrillary tangles. Therefore, tau quantification is possible with [F-18]MK-6240 PET/CT scans, and it can be used for assessment of Alzheimer's disease. However, long acquisition scans are required to provide fully quantitative estimates of pharmacokinetic parameters. Therefore, on the present study, dual-time-window (DTW) acquisitions was simulated to reduce PET/CT acquisition time, while taking into consideration perfusion changes and possible scanning protocol non-compliance. To that end, time activity curves (TACs) representing a 120-min acquisition (TAC(120)) were simulated using a two-tissue compartment model with metabolite corrected arterial input function from 90-min dynamic [F-18]MK-6240 PET scans of three healthy control subjects and five subjects with mild cognitive impairment or Alzheimer's disease. Therefore, TACs corresponding to different levels of specific binding were generated and then various perfusion changes were simulated. Next, DTW acquisitions were simulated consisting of an acquisition starting at tracer injection, a break and a second acquisition starting at 90 min post-injection. Finally, non-compliance with the PET/CT scanning protocol were simulated to assess its impact on quantification. All TACs were quantified using reference Logan's distribution volume ratio (DVR) and standardized uptake value ratio (SUVR90) using the cerebellar cortex as reference region. Results It was found that DVR from a DTW protocol with a 60-min break between two 30-min dynamic scans closely approximates the DVR from the uninterrupted TAC(120), with a regional bias smaller than 2.5%. Moreover, SUVR90 estimates were more susceptible (regional bias</p

    F-18-FDG-PET uptake in non-infected total hip prostheses

    Get PDF
    Background and purpose - F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) can be used in the diagnostic work-up of a patient with suspected periprosthetic joint infection (PJI) but, due to a lack of accurate interpretation criteria, this technique is not routinely applied. Since the physiological uptake pattern of FDG around a joint prosthesis is not fully elucidated, we determined the physiological FDG uptake in non-infected total hip prostheses. Patients and methods - Patients treated with primary total hip arthroplasty (1995-2016) who underwent a FDG-PET/CT for an indication other than a suspected PJI were retrospectively evaluated. Scans were both visually and quantitatively analyzed. Semi-quantitative analysis was performed by calculating maximum and peak standardized uptake values (SUVmax and SUVpeak) by volume of interests (VOIs) at 8 different locations around the prosthesis. Results - 58 scans from 30 patients were analyzed. In most hips, a diffuse heterogeneous uptake pattern around the prosthesis was observed (in 32/38 of the cemented prostheses, and in 16/20 of the uncemented prostheses) and most uptake was located around the neck of the prosthesis. The median SUVmax in the cemented group was 2.66 (95% CI 2.51-3.10) and in the uncemented group 2.87 (CI 2.65-4.63) (Median difference = -0.36 [CI -1.2 to 0.34]). In uncemented prostheses, there was a positive correlation in time between the age of the prosthesis and the FDG uptake (r(s) = 0.63 [CI 0.26-0.84]). Interpretation - Our study provides key data to develop accurate interpretation criteria to differentiate between physiological uptake and infection in patients with a prosthetic joint.</p

    Quantification of amyloid PET for future clinical use: a state-of-the-art review

    Get PDF
    Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods

    Quantification of amyloid PET for future clinical use: a state-of-the-art review

    Get PDF
    Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods

    Binding of the Dual-Action Anti-Parkinsonian Drug AG-0029 to Dopamine D-2 and Histamine H-3 Receptors:A PET Study in Healthy Rats

    Get PDF
    Introduction: Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction and a diverse range of nonmotor symptoms. Functional relationships between the dopaminergic and histaminergic systems suggest that dual-action pharmaceuticals like AG-0029 (D-2/D-3 agonist/H-3 antagonist) could ameliorate both the motor and cognitive symptoms of PD. The current study aimed to demonstrate the interaction of AG-0029 with its intended targets in the mammalian brain using positron emission tomography (PET). Methods: Healthy male Wistar rats were scanned with a small-animal PET camera, using either the dopamine D-2/D-3 receptor ligand [C-11]raclopride or the histamine H-3 receptor ligand [C-11]GSK-189254, before and after treatment with an intravenous, acute, single dose of AG-0029. Dynamic [C-11]raclopride PET data (60 min duration) were analyzed using the simplified reference tissue model 2 (SRTM2) with cerebellum as reference tissue and the nondisplaceable binding potential as the outcome parameter. Data from dynamic [C-11]GSK-189254 scans (60 min duration) with arterial blood sampling were analyzed using Logan graphical analysis with the volume of distribution (V-T) as the outcome parameter. Receptor occupancy was estimated using a Lassen plot. Results: Dopamine D-2/3 receptor occupancies in the striatum were 22.6 +/- 18.0 and 84.0 +/- 3.5% (mean +/- SD) after administration of 0.1 and 1 mg/kg AG-0029, respectively. In several brain regions, the V-T values of [C-11]GSK-189254 were significantly reduced after pretreatment of rats with 1 or 10 mg/kg AG-0029. The H-3 receptor occupancies were 11.9 +/- 8.5 and 40.3 +/- 11.3% for the 1 and 10 mg/kg doses of AG-0029, respectively. Conclusions: Target engagement of AG-0029 as an agonist at dopamine D-2/D-3 receptors and an antagonist at histamine H-3 receptors could be demonstrated in the rat brain with [C-11]raclopride and [C-11]GSK-189254 PET, respectively. The measured occupancy values reflect the previously reported high (subnanomolar) affinity of AG-0029 to D-2/D-3 and moderate (submicromolar) affinity to H-3 receptors

    Relative cerebral flow from dynamic PIB scans as an alternative for FDG scans in Alzheimer's disease PET studies

    Get PDF
    In Alzheimer's Disease (AD) dual-tracer positron emission tomography (PET) studies with 2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) and C-11-labelled Pittsburgh Compound B (PIB) are used to assess metabolism and cerebral amyloid-beta deposition, respectively. Regional cerebral metabolism and blood flow (rCBF) are closely coupled, both providing an index for neuronal function. The present study compared PIB-derived rCBF, estimated by the ratio of tracer influx in target regions relative to reference region (R-1) and early-stage PIB uptake (ePIB), to FDG scans. Fifteen PIB positive (+) patients and fifteen PIB negative (-) subjects underwent both FDG and PIB PET scans to assess the use of R-1 and ePIB as a surrogate for FDG. First, subjects were classified based on visual inspection of the PIB PET images. Then, discriminative performance (PIB+ versus PIB-) of rCBF methods were compared to normalized regional FDG uptake. Strong positive correlations were found between analyses, suggesting that PIB-derived rCBF provides information that is closely related to what can be seen on FDG scans. Yet group related differences between method's distributions were seen as well. Also, a better correlation with FDG was found for R-1 than for ePIB. Further studies are needed to validate the use of R-1 as an alternative for FDG studies in clinical applications

    Data sharing in neurodegenerative disease research: challenges and learnings from the innovative medicines initiative public-private partnership model

    Get PDF
    Efficient data sharing is hampered by an array of organizational, ethical, behavioral, and technical challenges, slowing research progress and reducing the utility of data generated by clinical research studies on neurodegenerative diseases. There is a particular need to address differences between public and private sector environments for research and data sharing, which have varying standards, expectations, motivations, and interests. The Neuronet data sharing Working Group was set up to understand the existing barriers to data sharing in public-private partnership projects, and to provide guidance to overcome these barriers, by convening data sharing experts from diverse projects in the IMI neurodegeneration portfolio. In this policy and practice review, we outline the challenges and learnings of the WG, providing the neurodegeneration community with examples of good practices and recommendations on how to overcome obstacles to data sharing. These obstacles span organizational issues linked to the unique structure of cross-sectoral, collaborative research initiatives, to technical issues that affect the storage, structure and annotations of individual datasets. We also identify sociotechnical hurdles, such as academic recognition and reward systems that disincentivise data sharing, and legal challenges linked to heightened perceptions of data privacy risk, compounded by a lack of clear guidance on GDPR compliance mechanisms for public-private research. Focusing on real-world, neuroimaging and digital biomarker data, we highlight particular challenges and learnings for data sharing, such as data management planning, development of ethical codes of conduct, and harmonization of protocols and curation processes. Cross-cutting solutions and enablers include the principles of transparency, standardization and co-design – from open, accessible metadata catalogs that enhance findability of data, to measures that increase visibility and trust in data reuse

    [11C]MeDAS PET: a non-invasive imaging tool for quantitative assessment of myelin loss in multiple sclerosis

    No full text
    Dataset of patients with primary and secondary progressive multiple sclerosis. Demographics: Male 70% Age 54 +-7.5 PET static and dynamic [11C]MeDAS MR (multiple sequences

    [11C]MeDAS PET: a non-invasive imaging tool for quantitative assessment of myelin loss in multiple sclerosis

    No full text
    Dataset of patients with primary and secondary progressive multiple sclerosis. Demographics: Male 70% Age 54 +-7.5 PET static and dynamic [11C]MeDAS MR (multiple sequences
    corecore