11 research outputs found

    Origin, structure and geochemistry of a rock glacier near Don Juan Pond, Wright Valley, Antarctica

    Get PDF
    The South Fork of Wright Valley contains one of the largest rock glaciers in the McMurdo Dry Valleys, Antarctica, stretching 7 km from the eastern boundary of the Labyrinth and terminating at Don Juan Pond (DJP). Here, we use results from ground-penetrating radar (GPR), qualitative field observations, soil leaching analyses and X-ray diffraction analyses to investigate rock glacier development. The absence of significant clean ice in GPR data, paired with observations of talus and interstitial ice influx from the valley walls, support rock glacier formation via talus accumulation. A quartz-dominated subsurface composition and discontinuous, well-developed desert pavements suggest initial rock glacier formation occurred before the late Quaternary. Major ion data from soil leaching analyses show higher salt concentrations in the rock glacier and talus samples that are close to hypersaline DJP. These observations suggest that DJP acts as a local salt source to the rock glacier, as well as the surrounding talus slopes that host water track systems that deliver solutes back into the lake, suggesting a local feedback system. Finally, the lack of lacustrine sedimentation on the rock glacier is inconsistent with the advance of a glacially dammed lake into South Fork during the Last Glacial Maximum

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Be-10/Be-9 Ratios Reflect Antarctic Ice Sheet Freshwater Discharge During Pliocene Warming

    No full text
    Along glaciated margins, ratios of meteoric cosmogenic beryllium‐10, 10Be, normalized to its stable isotope, 9Be, reflect an environmental signal, driven ultimately by climatic change. We explore the application of this isotopic pair as a proxy for East Antarctic Ice Sheet dynamics. We analyze 10Be/9Be in middle Pliocene glaciomarine sediments offshore the Wilkes Land Region (Integrated Ocean Drilling Program (IODP) Site U1361A) and examine our new record alongside existing biochemical/geochemical records (Ba/Al, opal %wt, εNd, and 87Sr/86Sr). 10Be/9Be ratios reach local maxima during pulsed, mild warming events and are strongly correlated with existing records that indicate concurrent ice sheet retraction and increased bioproductivity. We suggest climate change as the primary driver of the 10Be/9Be record near glaciated margins, whereby increased warming drives ice sheet retraction, discharging freshwaters and diluting the open ocean 10Be/9Be signal recorded in authigenic minerals. Plain Language Summary If the entire Antarctic Ice Sheet collapsed, it would raise global sea level by about 60 m (200 feet). How sensitive is the ice sheet to warming temperatures? Should we expect extreme sea level rise by the middle to late century, when global average temperatures could warm by about 2 °C (3.6 °F) or more? To answer these questions, earth scientists design numerical models to simulate ice sheet behavior and improve those models using physical evidence. High‐quality physical evidence is found in the marine sedimentary record deposited in the past under analogous warm conditions, such as during the Pliocene period (2.6–5.3 million years ago). The elemental and isotopic composition of these marine sediments gives clues as to how the ice sheet has reacted to warming temperatures. One such isotope is beryllium‐10 (10Be), which, in specific environments, fluctuates in tandem with glacial‐interglacial transitions. As additional marine sediment records identify specific mechanisms of ice mass loss at work, we begin to strengthen predictions of sea level rise from numerical simulations

    Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity.

    No full text
    The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 ((10)Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14-17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that &gt;14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO2 (&gt;400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO2 manifests at high latitudes

    An Anti-β-Amyloid Vaccine for Treating Cognitive Deficits in a Mouse Model of Down Syndrome

    No full text
    <div><p>In Down syndrome (DS) or trisomy of chromosome 21, the β-amyloid (Aβ) peptide product of the amyloid precursor protein (APP) is present in excess. Evidence points to increased <i>APP</i> gene dose and Aβ as playing a critical role in cognitive difficulties experienced by people with DS. Particularly, Aβ is linked to the late-life emergence of dementia as associated with neuropathological markers of Alzheimer’s disease (AD). At present, no treatment targets Aβ–related pathogenesis in people with DS. Herein we used a vaccine containing the Aβ 1–15 peptide embedded into liposomes together with the adjuvant monophosphoryl lipid A (MPLA). Ts65Dn mice, a model of DS, were immunized with the anti-Aβ vaccine at 5 months of age and were examined for cognitive measures at 8 months of age. The status of basal forebrain cholinergic neurons and brain levels of APP and its proteolytic products were measured. Immunization of Ts65Dn mice resulted in robust anti-Aβ IgG titers, demonstrating the ability of the vaccine to break self-tolerance. The vaccine-induced antibodies reacted with Aβ without detectable binding to either APP or its C-terminal fragments. Vaccination of Ts65Dn mice resulted in a modest, but non-significant reduction in brain Aβ levels relative to vehicle-treated Ts65Dn mice, resulting in similar levels of Aβ as diploid (2N) mice. Importantly, vaccinated Ts65Dn mice showed resolution of memory deficits in the novel object recognition and contextual fear conditioning tests, as well as reduction of cholinergic neuron atrophy. No treatment adverse effects were observed; vaccine did not result in inflammation, cellular infiltration, or hemorrhage. These data are the first to show that an anti-Aβ immunotherapeutic approach may act to target Aβ-related pathology in a mouse model of DS.</p></div
    corecore