522 research outputs found

    Enhancement of quantum dot peak-spacing fluctuations in the fractional q uantum Hall regime

    Full text link
    The fluctuations in the spacing of the tunneling resonances through a quantum dot have been studied in the quantum Hall regime. Using the fact that the ground-state of the system is described very well by the Laughlin wavefunction, we were able to determine accurately, via classical Monte Carlo calculations, the amplitude and distribution of the peak-spacing fluctuations. Our results clearly demonstrate a big enhancement of the fluctuations as the importance of the electronic correlations increases, namely as the density decreases and filling factor becomes smaller. We also find that the distribution of the fluctuations approaches a Gaussian with increasing density of random potentials.Comment: 6 pages, 3 figures all in gzipped tarred fil

    Quantum Baker Maps for Spiraling Chaotic Motion

    Full text link
    We define a coupling of two baker maps through a pi/2 rotation both in position and in momentum. The classical trajectories thus exhibit spiraling, or loxodromic motion, which is only possible for conservative maps of at least two degrees of freedom. This loxodromic baker map is still hyperbolic, that is, fully chaotic. Quantization of this map follows on similar lines to other generalized baker maps. It is found that the eigenvalue spectrum for quantum loxodromic baker map is far removed from those of the canonical random matrix ensembles. An investigation of the symmetries of the loxodromic baker map reveals the cause of this deviation from the Bohigas-Giannoni-Schmit conjecture

    Semiclassical approach to fidelity amplitude

    Get PDF
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio

    Lyapunov exponent of the random frequency oscillator: cumulant expansion approach

    Full text link
    We consider a one-dimensional harmonic oscillator with a random frequency, focusing on both the standard and the generalized Lyapunov exponents, λ\lambda and λ⋆\lambda^\star respectively. We discuss the numerical difficulties that arise in the numerical calculation of λ⋆\lambda^\star in the case of strong intermittency. When the frequency corresponds to a Ornstein-Uhlenbeck process, we compute analytically λ⋆\lambda^\star by using a cumulant expansion including up to the fourth order. Connections with the problem of finding an analytical estimate for the largest Lyapunov exponent of a many-body system with smooth interactions are discussed.Comment: 6 pages, 4 figures, to appear in J. Phys. Conf. Series - LAWNP0

    Measuring the Lyapunov exponent using quantum mechanics

    Full text link
    We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.Comment: 9 pages, 6 figure

    Quantum baker maps with controlled-NOT coupling

    Full text link
    The characteristic stretching and squeezing of chaotic motion is linearized within the finite number of phase space domains which subdivide a classical baker map. Tensor products of such maps are also chaotic, but a more interesting generalized baker map arises if the stacking orders for the factor maps are allowed to interact. These maps are readily quantized, in such a way that the stacking interaction is entirely attributed to primary qubits in each map, if each subsystem has power-of-two Hilbert space dimension. We here study the particular example of two baker maps that interact via a controlled-not interaction. Numerical evidence indicates that the control subspace becomes an ideal Markovian environment for the target map in the limit of large Hilbert space dimension.Comment: 8 page
    • 

    corecore