research

Lyapunov exponent of the random frequency oscillator: cumulant expansion approach

Abstract

We consider a one-dimensional harmonic oscillator with a random frequency, focusing on both the standard and the generalized Lyapunov exponents, λ\lambda and λ\lambda^\star respectively. We discuss the numerical difficulties that arise in the numerical calculation of λ\lambda^\star in the case of strong intermittency. When the frequency corresponds to a Ornstein-Uhlenbeck process, we compute analytically λ\lambda^\star by using a cumulant expansion including up to the fourth order. Connections with the problem of finding an analytical estimate for the largest Lyapunov exponent of a many-body system with smooth interactions are discussed.Comment: 6 pages, 4 figures, to appear in J. Phys. Conf. Series - LAWNP0

    Similar works

    Full text

    thumbnail-image

    Available Versions