34 research outputs found

    Síntesis química, actividad antitumoral modo de acción de la neurostatina y sus análogos sobre el crecimiento de gliomas

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 17-03-201

    PEITC-mediated inhibition of mRNA translation is associated with both inhibition of mTORC1 and increased eIF2α phosphorylation in established cell lines and primary human leukemia cells.

    Get PDF
    Increased mRNA translation drives carcinogenesis and is an attractive target for the development of new anti-cancer drugs. In this work, we investigated effects of phenethylisothiocyanate (PEITC), a phytochemical with chemopreventive and anti-cancer activity, on mRNA translation. PEITC rapidly inhibited global mRNA translation in human breast cancer-derived MCF7 cells and mouse embryonic fibroblasts (MEFs). In addition to the known inhibitory effects of PEITC on mTORC1 activity, we demonstrate that PEITC increased eIF2α phosphorylation. PEITC also increased formation of stress granules which are typically associated with eIF2α phosphorylation and accumulation of translationally stalled mRNAs. Analysis of genetically modified MEFs demonstrated that optimal inhibition of global mRNA translation by PEITC was dependent on eIF2α phosphorylation, but not mTORC1 inhibition. We extended this study into primary leukemic B cells derived from patients with chronic lymphocytic leukaemia (CLL). CLL cells were stimulated in vitro with anti-IgM to mimic binding of antigen, a major driver of this leukemia. In CLL cells, PEITC increased eIF2α phosphorylation, inhibited anti-IgM-induced mTORC1 activation and decreased both basal and anti-IgM-induced global mRNA translation. PEITC also inhibited transcription and translation of MYC mRNA and accumulation of the MYC oncoprotein, in anti-IgM-stimulated cells. Moreover, treatment of CLL cells with PEITC and the BTK kinase inhibitor ibrutinib decreased anti-IgM-induced translation and induced cell death to a greater extent than either agent alone. Therefore, PEITC can inhibit both global and mRNA specific translation (including MYC) via effects on multiple regulatory pathways. Inhibition of mRNA translation may contribute to the chemopreventive and anti-cancer effects of PEITC

    Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications

    Get PDF
    Aims: Data on the impact of COVID-19 in chronic heart failure (CHF) patients and its potential to trigger acute heart failure (AHF) are lacking. The aim of this work was to study characteristics, cardiovascular outcomes and mortality in patients with confirmed COVID-19 infection and a prior diagnosis of heart failure (HF). Further aims included the identification of predictors and prognostic implications for AHF decompensation during hospital admission and the determination of a potential correlation between the withdrawal of HF guideline-directed medical therapy (GDMT) and worse outcomes during hospitalization. Methods and results: Data for a total of 3080 consecutive patients with confirmed COVID-19 infection and follow-up of at least 30 days were analysed. Patients with a previous history of CHF (n = 152, 4.9%) were more prone to the development of AHF (11.2% vs. 2.1%; P < 0.001) and had higher levels of N-terminal pro brain natriuretic peptide. In addition, patients with previous CHF had higher mortality rates (48.7% vs. 19.0%; P < 0.001). In contrast, 77 patients (2.5%) were diagnosed with AHF, which in the vast majority of cases (77.9%) developed in patients without a history of HF. Arrhythmias during hospital admission and CHF were the main predictors of AHF. Patients developing AHF had significantly higher mortality (46.8% vs. 19.7%; P < 0.001). Finally, the withdrawal of beta-blockers, mineralocorticoid receptor antagonists and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers was associated with a significant increase in in-hospital mortality. Conclusions: Patients with COVID-19 have a significant incidence of AHF, which is associated with very high mortality rates. Moreover, patients with a history of CHF are prone to developing acute decompensation after a COVID-19 diagnosis. The withdrawal of GDMT was associated with higher mortalit

    Blockade of IL-15 activity inhibits microglial activation through the NFkappaB, p38, and ERK1/2 pathways, reducing cytokine and chemokine release

    No full text
    Reactive glia formation is one of the hallmarks of damage to the CNS, but little information exists on the signals that direct its activation. Microglial cells are the main regulators of both innate and adaptative immune responses in the CNS. The proinflammatory cytokine IL-15 is involved in regulating the response of T and B cells, playing a key role in regulating nervous system inflammatory events. We have used a microglial culture model of inflammation induced by LPS and IFNgamma to evaluate the role of IL-15 in the proinflammatory response. Our results indicate that IL-15 is necessary for the reactive response, its deficiency (IL-15-/-) leading to the development of a defective proinflammatory response. Blockade of IL-15, both with blocking antibodies or with the ganglioside Neurostatin, inhibited the activation of the NFkappaB pathway, decreasing iNOS expression and NO production. Inhibiting IL-15 signaling also blocked the activation of the mitogen-activated protein kinase (MAPK) pathways ERK1/2 and p38. The major consequence of these inhibitory effects, analyzed using cytokine antibody arrays, was a severe decrease in the production of chemokines, cytokines and growth factors, like CCL17, CCL19, IL-12, or TIMP-1, that are essential for the development of the phenotypic changes of glial activation. In conclusion, activation of the IL-15 system seems a necessary step for the development of glial reactivity and the regulation of the physiology of glial cells. Modulating IL-15 activity opens the possibility of developing new strategies to control gliotic events upon inflammatory stimulation

    紀伊国 和歌山藩 飛地札 銀3分

    No full text
    日本銀行金融研究所所蔵藩札資料番号:ⅢAエドa1-57-3ニ-25(1)科学研究費助成事業(研究成果公開促進費)で電子化を実施データベースの名称:藩札等に関する統合データベース課題番号:18HP8038藩札の利用に関するお問い合わせ:藩札画像の転載(出版物・HP等)に際しては、日本銀行貨幣博物館への申請手続きが必要です。詳しくは貨幣博物館ホームページ(http://www.imes.boj.or.jp/cm/service/)をご覧ください

    Development of PROTACs to address clinical limitations associated with BTK-targeted kinase inhibitors

    No full text
    Chronic lymphocytic leukemia is a common form of leukemia and is dependent on growth-promoting signaling via the B-cell receptor. The Bruton tyrosine kinase (BTK) is an important mediator of B-cell receptor signaling and the irreversible BTK inhibitor ibrutinib can trigger dramatic clinical responses in treated patients. However, emergence of resistance and toxicity are major limitations which lead to treatment discontinuation. There remains, therefore, a clear need for new therapeutic options. In this review, we discuss recent progress in the development of BTK-targeted proteolysis targeting chimeras (PROTACs) describing how such agents may provide advantages over ibrutinib and highlighting features of PROTACs that are important for the development of effective BTK degrading agents. Overall, PROTACs appear to be an exciting new approach to target BTK. However, development is at a very early stage and considerable progress is required to refine these agents and optimize their drug-like properties before progression to clinical testing

    Synthesis and characterization of neurostatin-related compounds with high inhibitory activity of glioma growth

    No full text
    O-acetyl-ganglioside neurostatin, (Galβ1 → 3GalNAcβ1 → 4[9-O-Ac Neu5Acα2 → 8Neu5Acα2 → 3]Galβ1 → 4Glcβ1 → 1′-ceramide), is a natural GD1b-derived inhibitor of astroblast and astrocytoma division, whose structure and purification method limits its availability and stability. Therefore, we set-up the reaction to obtain O-acetylated and O-butyrylated neurostatin analogs by chemical synthesis, in order to improve its availability and stability. The compounds antitumoral activity was evaluated on U373MG and C6 glioblastoma cells, observing that the O-acetylation-dependent increase in the inhibitory activity was enhanced by O-butyrylation, with no further improvement with the multi-substitution, pointing to the initial conformational change and the stability change as responsible of its function. These results open the possibility for the application of the neurostatin-related compounds to in-vivo tumoral models. © 2010 Elsevier Masson SAS. All rights reserved.Peer Reviewe

    Interleukin 15 expression in the CNS: blockade of its activity prevents glial activation after an inflammatory injury.

    No full text
    Although reactive glia formation after neuronal degeneration or traumatic damage is one of the hallmarks of central nervous system (CNS) injury, we have little information on the signals that direct activation of resting glia. IL-15, a pro-inflammatory cytokine involved in regulating the response of T and B cells, may be also key for the regulation of early inflammatory events in the nervous system. IL-15 was expressed in the CNS, most abundantly in cerebellum and hippocampus, mainly in astrocytes and in some projection neurons. Using a rodent model of acute inflammatory injury [lipopolysaccharide (LPS) injection], we found enhanced expression of IL-15 in both reactive astroglia and microglia, soon after CNS injury. Blockade of IL-15 activity with an antibody to the cytokine, reversed activation of both glial types, suggesting that IL-15 has a major role in the generation of gliotic tissue and in the regulation of neuroimmune responses. Because IL-15 appears to modulate the inflammatory environment acutely generated after CNS injury, regulating IL-15 expression seems a clear antiinflammatory therapy to improve the outcome of neurodegenerative diseases and CNS trauma
    corecore