8 research outputs found

    Maya chemistry of organic inorganic hybrid materials: isomerization, cyclicization and redox tuning of organic dyes attached to porous silicates

    Full text link
    [EN] Association of indigo and lapachol dyes to aluminosilicate clays yields polyfunctional organic – inorganic hybrid materials forming Maya Blue-like systems. Upon partial removing of clay's zeolitic water by moderate thermal treatment, abundant isomerization, cyclicization and oxidation reactions occur defining a‘ Maya chemistry whose complexity could explain the versatile use of such materials in the pre-Columbian cultures and permits the preparation of polyfunctional materials potentially usable for therapeutic and catalytic purposes.Financial support is gratefully acknowledged from the MEC Projects CTQ2011-28079-CO3-01 and 02 which are also supported with ERDF funds.Domenech Carbo, A.; Valle-Algarra, FM.; Domenech Carbo, MT.; Osete Cortina, L.; Domine, ME. (2013). Maya chemistry of organic inorganic hybrid materials: isomerization, cyclicization and redox tuning of organic dyes attached to porous silicates. RSC Advances. 3:20099-20105. https://doi.org/10.1039/c3ra42890gS20099201053GĂłmez-Romero, P., & Sanchez, C. (2005). Hybrid materials. Functional properties. From Maya Blue to 21st century materials. New J. Chem., 29(1), 57-58. doi:10.1039/b416075bCalzaferri, G., Huber, S., Maas, H., & Minkowski, C. (2003). Host–Guest Antenna Materials. Angewandte Chemie International Edition, 42(32), 3732-3758. doi:10.1002/anie.200300570DomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., SĂĄnchez del RĂ­o, M., VĂĄzquez de Agredos Pascual, M. L., & Lima, E. (2009). Maya Blue as a nanostructured polyfunctional hybrid organic–inorganic material: the need to change paradigms. New Journal of Chemistry, 33(12), 2371. doi:10.1039/b901942aHubbard, B., Kuang, W., Moser, A., Facey, G. A., & Detellier, C. (2003). Structural study of Maya Blue: textural, thermal and solidstate multinuclear magnetic resonance characterization of the palygorskite-indigo and sepiolite-indigo adducts. Clays and Clay Minerals, 51(3), 318-326. doi:10.1346/ccmn.2003.0510308Fois, E., Gamba, A., & Tilocca, A. (2003). On the unusual stability of Maya blue paint: molecular dynamics simulations. Microporous and Mesoporous Materials, 57(3), 263-272. doi:10.1016/s1387-1811(02)00596-6SĂĄnchez del RĂ­o, M., Martinetto, P., Somogyi, A., Reyes-Valerio, C., DooryhĂ©e, E., Peltier, N., 
 Dran, J.-C. (2004). Microanalysis study of archaeological mural samples containing Maya blue pigment. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(10-11), 1619-1625. doi:10.1016/j.sab.2004.07.027Giustetto, R., LlabrĂ©s i Xamena, F. X., Ricchiardi, G., Bordiga, S., Damin, A., Gobetto, R., & Chierotti, M. R. (2005). Maya Blue:  A Computational and Spectroscopic Study. The Journal of Physical Chemistry B, 109(41), 19360-19368. doi:10.1021/jp048587hDomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., & VĂĄzquez de Agredos Pascual, M. L. (2006). Dehydroindigo:  A New Piece into the Maya Blue Puzzle from the Voltammetry of Microparticles Approach. The Journal of Physical Chemistry B, 110(12), 6027-6039. doi:10.1021/jp057301lDomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., & VĂĄzquez de Agredos Pascual, M. L. (2007). Indigo/Dehydroindigo/Palygorskite Complex in Maya Blue:  An Electrochemical Approach. The Journal of Physical Chemistry C, 111(12), 4585-4595. doi:10.1021/jp067369gDomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., & de Agredos Pascual, M. L. V. (2007). Chemometric Study of Maya Blue from the Voltammetry of Microparticles Approach. Analytical Chemistry, 79(7), 2812-2821. doi:10.1021/ac0623686DOMÉNECH, A., DOMÉNECH-CARBÓ, M. T., & VÁZQUEZ DE AGREDOS PASCUAL, M. L. (2009). CORRELATION BETWEEN SPECTRAL, SEM/EDX AND ELECTROCHEMICAL PROPERTIES OF MAYA BLUE: A CHEMOMETRIC STUDY*. Archaeometry, 51(6), 1015-1034. doi:10.1111/j.1475-4754.2009.00453.xDomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., & VĂĄzquez de Agredos-Pascual, M. L. (2011). From Maya Blue to «Maya Yellow»: A Connection between Ancient Nanostructured Materials from the Voltammetry of Microparticles. Angewandte Chemie International Edition, 50(25), 5741-5744. doi:10.1002/anie.201100921DomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., Vidal-Lorenzo, C., & de Agredos-Pascual, M. L. V. (2011). Insights into the Maya Blue Technology: Greenish Pellets from the Ancient City of La Blanca. Angewandte Chemie International Edition, 51(3), 700-703. doi:10.1002/anie.201106562DomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., SĂĄnchez del RĂ­o, M., Goberna, S., & Lima, E. (2009). Evidence of Topological Indigo/Dehydroindigo Isomers in Maya Blue-Like Complexes Prepared from Palygorskite and Sepiolite. The Journal of Physical Chemistry C, 113(28), 12118-12131. doi:10.1021/jp900711kDomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., del RĂ­o, M. S., & de Agredos Pascual, M. L. V. (2008). Comparative study of different indigo-clay Maya Blue-like systems using the voltammetry of microparticles approach. Journal of Solid State Electrochemistry, 13(6), 869-878. doi:10.1007/s10008-008-0616-1DomĂ©nech-CarbĂł, A., DomĂ©nech-CarbĂł, M. T., Valle-Algarra, F. M., Domine, M. E., & Osete-Cortina, L. (2013). On the dehydroindigo contribution to Maya Blue. Journal of Materials Science, 48(20), 7171-7183. doi:10.1007/s10853-013-7534-zDomĂ©nech-CarbĂł, A., Valle-Algarra, F. M., DomĂ©nech-CarbĂł, M. T., Domine, M. E., Osete-Cortina, L., & Gimeno-Adelantado, J. V. (2013). Redox Tuning and Species Distribution in Maya Blue-Type Materials: A Reassessment. ACS Applied Materials & Interfaces, 5(16), 8134-8145. doi:10.1021/am402193uRondão, R., Seixas de Melo, J. S., Bonifácio, V. D. B., & Melo, M. J. (2010). Dehydroindigo, the Forgotten Indigo and Its Contribution to the Color of Maya Blue. The Journal of Physical Chemistry A, 114(4), 1699-1708. doi:10.1021/jp907718kTilocca, A., & Fois, E. (2009). The Color and Stability of Maya Blue: TDDFT Calculations. The Journal of Physical Chemistry C, 113(20), 8683-8687. doi:10.1021/jp810945aGiustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M. R., & Gobetto, R. (2011). Host/Guest Interactions in a Sepiolite-Based Maya Blue Pigment: A Spectroscopic Study. The Journal of Physical Chemistry C, 115(34), 16764-16776. doi:10.1021/jp203270cGiustetto, R., & Wahyudi, O. (2011). Sorption of red dyes on palygorskite: Synthesis and stability of red/purple Mayan nanocomposites. Microporous and Mesoporous Materials, 142(1), 221-235. doi:10.1016/j.micromeso.2010.12.004Giustetto, R., Seenivasan, K., Pellerej, D., Ricchiardi, G., & Bordiga, S. (2012). Spectroscopic characterization and photo/thermal resistance of a hybrid palygorskite/methyl red Mayan pigment. Microporous and Mesoporous Materials, 155, 167-176. doi:10.1016/j.micromeso.2012.01.024SĂĄnchez del RĂ­o, M., Boccaleri, E., Milanesio, M., Croce, G., van Beek, W., Tsiantos, C., 
 GarcĂ­a-Romero, E. (2009). A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite–indigo to produce Maya blue. Journal of Materials Science, 44(20), 5524-5536. doi:10.1007/s10853-009-3772-5Mondelli, C., RĂ­o, M. S. del, GonzĂĄlez, M. A., MagazzĂș, A., Cavallari, C., SuĂĄrez, M., 
 Romano, P. (2012). Role of water on formation and structural features of Maya blue. Journal of Physics: Conference Series, 340, 012109. doi:10.1088/1742-6596/340/1/012109Dejoie, C., Martinetto, P., DooryhĂ©e, E., Strobel, P., Blanc, S., Bordat, P., 
 Anne, M. (2010). Indigo@Silicalite: a New Organic−Inorganic Hybrid Pigment. ACS Applied Materials & Interfaces, 2(8), 2308-2316. doi:10.1021/am100349bDejoie, C., Martinetto, P., DooryhĂ©e, E., Brown, R., Blanc, S., Bordat, P., 
 Anne, M. (2011). Diffusion Of Indigo Molecules Inside The Palygorskite Clay Channels. MRS Proceedings, 1319. doi:10.1557/opl.2011.924Ovarlez, S., Giulieri, F., Chaze, A.-M., Delamare, F., Raya, J., & Hirschinger, J. (2009). The Incorporation of Indigo Molecules in Sepiolite Tunnels. Chemistry - A European Journal, 15(42), 11326-11332. doi:10.1002/chem.200901482Ovarlez, S., Giulieri, F., Delamare, F., Sbirrazzuoli, N., & Chaze, A.-M. (2011). Indigo–sepiolite nanohybrids: Temperature-dependent synthesis of two complexes and comparison with indigo–palygorskite systems. Microporous and Mesoporous Materials, 142(1), 371-380. doi:10.1016/j.micromeso.2010.12.025Franç, N. A., Giulieri, oise, Ovarlez, S., & Chaze, A. M. (2012). Indigo/sepiolite nanohybrids: stability of natural pigments inspired by Maya blue. International Journal of Nanotechnology, 9(3/4/5/6/7), 605. doi:10.1504/ijnt.2012.045334Tsiantos, C., Tsampodimou, M., Kacandes, G. H., SĂĄnchez del RĂ­o, M., Gionis, V., & Chryssikos, G. D. (2011). Vibrational investigation of indigo–palygorskite association(s) in synthetic Maya blue. Journal of Materials Science, 47(7), 3415-3428. doi:10.1007/s10853-011-6189-xLima, E., GuzmĂĄn, A., Vera, M., Rivera, J. L., & Fraissard, J. (2012). Aged Natural and Synthetic Maya Blue-Like Pigments: What Difference Does It Make? The Journal of Physical Chemistry C, 116(7), 4556-4563. doi:10.1021/jp207602mKumagai, Y., Tsurutani, Y., Shinyashiki, M., Homma-Takeda, S., Nakai, Y., Yoshikawa, T., & Shimojo, N. (1997). Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase. Environmental Toxicology and Pharmacology, 3(4), 245-250. doi:10.1016/s1382-6689(97)00019-7Nasiri, H. R., Bolte, M., & Schwalbe, H. (2008). Electrochemical and crystal structural analysis ofα- and dehydro-α-lapachones. Natural Product Research, 22(14), 1225-1230. doi:10.1080/14786410701654925Garkavtsev, I., Chauhan, V. P., Wong, H. K., Mukhopadhyay, A., Glicksman, M. A., Peterson, R. T., & Jain, R. K. (2011). Dehydro- -lapachone, a plant product with antivascular activity. Proceedings of the National Academy of Sciences, 108(28), 11596-11601. doi:10.1073/pnas.1104225108DomĂ©nech-CarbĂł, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13Hoffman, R. C., Zilber, R. C., & Hoffman, R. E. (2010). NMR spectroscopic study of the Murex trunculus dyeing process. Magnetic Resonance in Chemistry, 48(11), 892-895. doi:10.1002/mrc.2685Laatsch, H., Thomson, R. H., & Cox, P. J. (1984). Spectroscopic properties of violacein and related compounds: crystal structure of tetramethylviolacein. Journal of the Chemical Society, Perkin Transactions 2, (8), 1331. doi:10.1039/p29840001331Silva, J. F. M. da, Garden, S. J., & Pinto, A. C. (2001). The chemistry of isatins: a review from 1975 to 1999. Journal of the Brazilian Chemical Society, 12(3), 273-324. doi:10.1590/s0103-50532001000300002DomĂ©nech-CarbĂł, A., Martini, M., de Carvalho, L. M., & DomĂ©nech-CarbĂł, M. T. (2012). Square wave voltammetric determination of the redox state of a reversibly oxidized/reduced depolarizer in solution and in solid state. Journal of Electroanalytical Chemistry, 684, 13-19. doi:10.1016/j.jelechem.2012.08.016DomĂ©nech, A., DomĂ©nech-CarbĂł, M. T., Osete-Cortina, L., & Montoya, N. (2013). Application of solid-state electrochemistry techniques to polyfunctional organic–inorganic hybrid materials: The Maya Blue problem. Microporous and Mesoporous Materials, 166, 123-130. doi:10.1016/j.micromeso.2012.04.031Bond, A. M., Marken, F., Hill, E., Compton, R. G., & HĂŒgel, H. (1997). The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. Journal of the Chemical Society, Perkin Transactions 2, (9), 1735-1742. doi:10.1039/a701003fHe, H., Ding, Z., & Shoesmith, D. W. (2009). The determination of electrochemical reactivity and sustainability on individual hyper-stoichiometric UO2+x grains by Raman microspectroscopy and scanning electrochemical microscopy. Electrochemistry Communications, 11(8), 1724-1727. doi:10.1016/j.elecom.2009.07.013Guadagnini, L., Maljusch, A., Chen, X., Neugebauer, S., Tonelli, D., & Schuhmann, W. (2009). Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM). Electrochimica Acta, 54(14), 3753-3758. doi:10.1016/j.electacta.2009.01.076Yasarawan, N., & van Duijneveldt, J. S. (2008). Dichroism in Dye-Doped Colloidal Liquid Crystals. Langmuir, 24(14), 7184-7192. doi:10.1021/la800849yPires, S. M. G., Paula, R. D., SimĂ”es, M. M. Q., Silva, A. M. S., Domingues, M. R. M., Santos, I. C. M. S., 
 Cavaleiro, J. A. S. (2011). Novel biomimetic oxidation of lapachol with H2O2 catalysed by a manganese(iii) porphyrin complex. RSC Advances, 1(7), 1195. doi:10.1039/c1ra00578bNiehues, M., Barros, V. P., Emery, F. da S., Dias-Baruffi, M., Assis, M. das D., & Lopes, N. P. (2012). Biomimetic in vitro oxidation of lapachol: A model to predict and analyse the in vivo phase I metabolism of bioactive compounds. European Journal of Medicinal Chemistry, 54, 804-812. doi:10.1016/j.ejmech.2012.06.042Ferraz, P. A. ., de Abreu, F. C., Pinto, A. V., Glezer, V., Tonholo, J., & Goulart, M. O. . (2001). Electrochemical aspects of the reduction of biologically active 2-hydroxy-3-alkyl-1,4-naphthoquinones. Journal of Electroanalytical Chemistry, 507(1-2), 275-286. doi:10.1016/s0022-0728(01)00439-9Abreu, F. C., Goulart, M. O. F., & Brett, A. M. O. (2002). Reduction of Lapachones in Aqueous Media at a Glassy Carbon Electrode. Electroanalysis, 14(1), 29-34. doi:10.1002/1521-4109(200201)14:13.0.co;2-aNgameni, E., Tonle, I. K., Nanseu, C. P., & Wandji, R. (2000). Voltammetry Study of 2-Hydroxy-3-isopropenyl-1,4-naphthoquinone Using a Carbon Paste Electrode. Electroanalysis, 12(11), 847-852. doi:10.1002/1521-4109(200007)12:113.0.co;2-9Goulart, M. O. F., Lima, N. M. F., Sant’Ana, A. E. G., Ferraz, P. A. L., Cavalcanti, J. C. M., Falkowski, P., 
 Liwo, A. (2004). Electrochemical studies of isolapachol with emphasis on oxygen interaction with its radical anions. Journal of Electroanalytical Chemistry, 566(1), 25-29. doi:10.1016/j.jelechem.2003.10.043Jungbluth, G., RĂŒhling, I., & Ternes, W. (2000). Oxidation of flavonols with Cu(II), Fe(II) and Fe(III) in aqueous media. Journal of the Chemical Society, Perkin Transactions 2, (9), 1946-1952. doi:10.1039/b002323jCaamal-Fuentes, E., Torres-Tapia, L. W., SimĂĄ-Polanco, P., Peraza-SĂĄnchez, S. R., & Moo-Puc, R. (2011). Screening of plants used in Mayan traditional medicine to treat cancer-like symptoms. Journal of Ethnopharmacology, 135(3), 719-724. doi:10.1016/j.jep.2011.04.004Arnold, D. E., Bohor, B. F., Neff, H., Feinman, G. M., Williams, P. R., Dussubieux, L., & Bishop, R. (2012). The first direct evidence of pre-columbian sources of palygorskite for Maya Blue. Journal of Archaeological Science, 39(7), 2252-2260. doi:10.1016/j.jas.2012.02.03

    Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment

    Full text link
    [EN] The voltammetry of microparticles (VMP) methodology was used to characterize the biological attack of different bacteria and fungi to reconstructed egg tempera and egg linseed oil emulsion paint films containing cadmium yellow (CdS), which mimic historical painting techniques. When these paint films are in contact with aqueous acetate buffer, different cathodic signals are observed. As a result of the crossing of VMP data with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electrochemical microscopy (SECM), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM), these voltammetric signals can be associated with the reduction of CdS and different complexes associated to the proteinaceous and fatty acid fractions of the binders. After biological attack with different fungi (Acremonium chrysogenum, Aspergillus niger, Mucor rouxii, Penicillium chrysogenum, and Trichoderma pseudokoningii) and bacteria (Arthrobacter oxydans, Bacillus amyloliquefaciens, and Streptomyces cellulofans), the observed electrochemical signals experience specific modifications depending on the binder and the biological agent, allowing for an electrochemical monitoring of biological attack.Financial support from the MINECO Projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P which are supported with ERDF funds is gratefully acknowledged. The authors also wish to thank Dr. JosĂ© Luis Moya LĂłpez, Mr. Manuel Planes Insausti, and Mrs. Alicia Nuez InbernĂłn (Microscopy Service of the Universitat PolitĂšcnica de ValĂšncia) for technical support.Ortiz-Miranda, A.; Domenech Carbo, A.; Domenech Carbo, MT.; Osete Cortina, L.; Valle-Algarra, FM.; Bolivar Galiano, F.; Martin Sanchez, I.... (2016). Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment. Journal of Solid State Electrochemistry. 20(12):3287-3302. https://doi.org/10.1007/s10008-016-3349-6S328733022012Ratledge C (1994) Biochemistry of microbial degradation. Springer, BerlinCaneva G, Nugari MP, Salvadori O (2008) Plant biology for cultural heritage, the Getty Conservation Institute, Los AngelesSterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 47–55 and references thereinGargani G (1968) Fungus contamination of Florence art masterpieces before and after the 1966 disaster. In: Walters AH, Elphick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp. 252–257Seves AM, Sora S, Ciferr O (1996) The microbial colonization of oil paintings—a laboratory investigation. Int Biodeter Biodegr. 37:215–224Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. University of LisbonStrzelczyk AB (2004) Observations on aesthetic and structural changes induced in polish historic objects by microorganisms. Int Biodeter Biodegr. 53:151–156LĂłpez-Miras M, Piñar G, Romero-Noguera J, Bolivar-Galiano FC, Ettenauer J, Sterflinger K, MartĂ­n-SĂĄnchez I (2013) Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29:301–314Koszewski A, Rymuza Z, Reuther F (2008) Evaluation of nanomechanical, nanotribological and adhesive properties of ultrathin polymer resist film by AFM. Micro Engn 85:1189–1192Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S (2001) An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol Meth 45:77–87Florian MLE (1996) The role of the conidia of fungi in fox spots. Stud Conserv 41:65–75Arai H, Matsui N, Matsumura N, Murakita H (1988) Biochemical investigations on the formation mechanisms of foxing. Stud Conserv 33:11–12Arai H, Matsumura N, Murakita H (1990) Microbiological studies on the conservation of paper and related cultural properties: part 9, induction of artificial foxing. Science for Conservation 29:25–34Hayashi T, Namili M (1986) Role of sugar fragmentation in early stage browning of amino-carbonyl reaction of sugars with amino acids. Agr Biol Chem Tokyo 50:1965–1970Allsopp D, Seal KJ, Gaylarde CC (2004) Introduction to biodeterioration, 2 edn. Cambridge University Press, CambridgeBock E, Sand W (1993) The microbiology of masonry biodeterioration. J Appl Bacteriol 74:503–514Ciferri O (2002) The role of microorganisms in the degradation of cultural heritage. Rev Conserv 3:35–45Van der Snickt G, Dik J, Cotte M, Janssens K, Jaroszewicz J, De Wolf W, Groenewegen J, Van der Loeff L (2009) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal Chem 81:2600–2610Child AM (1995) Microbial taphonomy of archaeological bone. Stud Conserv 40:19–30Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42(2007):1090–1100Kinderlerer JL (1994) Degradation of the lauric acid oils. Int Biodeter Biodegr 33(1994):345–354van den Berg JDJ, van den Berg KJ, Boon JJ (2002) Identification of non-cross-linked compounds in methanolic extracts of cured and aged linseed oil-based paint films using gas chromatography-mass spectrometry. J Chromatogr A 950:195–211 and references thereinLefĂšvre M (1974) La ‘maladie verte’ de Lascaux. Stud Conserv 19:126–156Petushkova JP, Lyalikova NN (1986) Microbiological degradation of lead-containing pigments in mural paintings. Stud Conserv 31:65–69Breitbach AM, Rocha JC, Gaylarde CC (2011) Influence of pigment on biodeterioration of acrylic paint films in southern Brazil. J Coat Technol Res 8:619–628Keune K, van Loon A, Boon JJ (2011) SEM backscattered-electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Microsc Microanal 17:696–701Meilunas RJ, Bentsen JG, Steinberg A (1990) Analysis of aged paint binders by FTIR spectroscopy. Stud Conserv 35:33–51Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M (2008) Attenuated total reflection micro FTIR characterization of pigment–binder interaction in reconstructed paint films. Anal Bioanal Chem 392:65–76SalvadĂł N, ButĂ­ S, Nicholson J, Emerich H, Labrador A, Pradell T (2009) Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta 79:419–428Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem 20:1–86Scholz F, Schröder U, Gulabowski R, DomĂ©nech-CarbĂł A (2014) Electrochemistry of immobilized particles and Dropletst, 2 edn. Springer, Berlin-HeidelbergDomĂ©nech-CarbĂł A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report). Pure Appl Chem 85:609–631DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Costa V (2009) Electrochemical methods for Archaeometry, conservation and restoration (monographs in electrochemistry series Scholz F edit). Springer, Berlin-HeidelbergDomĂ©nech-CarbĂł A (2010) Electrochemistry for conservation science. J Solid State Electr 14:349–351Matteini M, Moles A (1989) La Chimica nel Restauro. Nardini, FirenzeGettens RJ, Stout GL (1966) Painting materials. A short encyclopedia. Dover Publications, New YorkCennini C (1982) Il libro dell’ arte. Akal, MadridCepriĂĄ G, GarcĂ­a-Gareta E, PĂ©rez-Arantegui J (2005) Cadmium yellow detection and quantification by voltammetry of immobilized microparticles. Electroanalysis 17:1078–1084DomĂ­nguez I, DomĂ©nech-CarbĂł A, Cerisuelo JP, LĂłpez-Carballo G, HenĂĄndez-Muñoz P, Gavara R (2014) Contact probe electrochemical characterization and metal speciation of silver LLDPE nanocomposite films. J Solid State Electrochem 18:2099–2110Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487Chang CM, Powrie WD, Fennema O (1977) Microstructure of egg yolk. J Food Sci 42:1193–1200Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671Boehm S, Abaturov LV (1977) Structural changes of met-haemoglobin by dehydration. FEBS Lett 77:21–24Karpowicz A (1981) Ageing and deterioration of proteinaceous media. Stud Conserv 26:153–160Koper A, Grabarczyk M (2012) Simultaneous voltammetric determination of trace bismuth(III) and cadmium(II) in water samples by adsorptive stripping voltammetry in the presence of cupferron. J Electroanal Chem 681:1–5Zakharchuk N, Meyer S, Lange B, Scholz F (2000) A comparative study of lead oxide modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized lead oxides. Croat Chem Acta 73:667–704Komorsky-Lovric S, Lovric M, Bond AM (1992) Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Anal Chim Acta 258:299–305Arjmand F, Adriaens A (2012) Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem 16:535–543Meyer B, Ziemer B, Scholz F (1995) In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J Electroanal Chem 392:79–83Hasse U, Scholz F (2001) In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochem Commun 3:429–434DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Mas-BarberĂĄ X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579Eissler RL, Princen RH (1972) The interface between reactive pigment and binder matrix. J Electroanal Chem 37:327–336Kuznetsov AM, Ulstrup J (1989) Protein dynamics and electronic fluctuation effects in electron transfer reactions of membrane-bound proteins and metalloprotein complexes. J Electroanal Chem 275:289–305Colletti LP, Teklay D, Stickney JL (1994) Thin-layer electrochemical studies of the oxidative underpotential deposition of sulfur and its application to the electrochemical atomic layer epitaxy deposition of CdS. J Electroanal Chem 369:145–152Gulaboski R, Mirceski V, Bogeski I, Hoth M (2012) Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J Solid State Electrochem 16:2315–2328Guidelli R, Becucci L (2011) Ion transport across biomembranes and model membranes. J Solid State Electrochem 15:1459–1470Sutherland K (2003) Solvent-extractable components of linseed oil paint films. Stud Conserv 48:111–135Rossi M, Alamprese C, Ratti S (2007) Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem 102:812–817Ziyatdinova G, Morozov M, Budnikov H (2012) MWNT-modified electrodes for voltammetric determination of lipophilic vitamins. J Solid State Electrochem 16:2441–2447Madani A, Nessark B, Boukherroub R, Chehimi MM (2011) Preparation and electrochemical behaviour of PPy–CdS composite films. J Electroanal Chem 650:176–181Derrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los Angelesvan der Weerd J, van Loon A, Boon JJ (2005) FTIR studies of the effects of pigments on the aging of oil. Stud Conserv 50:3–22Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Bioch Bioph Sin 39:549–559Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B-Enzym 7:207–221Furlan PY, Scott SA, Peaslee MH (2007) FTIR-ATR study of pH effects on egg albumin secondary structure. Spectrosc Lett 40:475–482Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry-US 29:3303–3308Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X (2012) Structure and biodegradation mechanism of milled B. mori silk particles. Biomacromolecules 13:2503–2512Anton M (2013) Egg yolk: structures, functionalities and processes. J Sci Food Agr 93:2871–2880Hevonoja T, PentikĂ€inen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488:189–210Kumpula LS, Kumpula JM, Taskinen MR, Jauhiainen M, Kaski K, Ala-Korpela M (2008) Reconsideration of hydrophobic lipid distributions in lipoprotein particles. Chem Phys Lipids 155:57–62 and references thereinSchneider H, Morrod RS, Colvin JR, Tattrie NH (1973) The lipid core model of lipoproteins. Chem Phys Lipids 10:328–353DomĂ©nech-CarbĂł MT, Osete-Cortina L, de la Cruz-Cañizares J, BolĂ­var-Galiano F, Romero-Noguera J, MartĂ­n-SĂĄnchez I, FernĂĄndez-Vivas MA (2006) Study of the microbiodegradation of terpenoid resin-based varnishes from easel painting using pirolisis-gas chromatography-mass spectrometry and gas chromatography-mass spectrometry. Anal Bioanal Chem 385:1265–128

    Effect of fenpropimorph, prochloraz and tebuconazole on growth and production of T-2 and HT-2 toxins by Fusarium langsethiae in oat-based medium.

    Get PDF
    Fusarium langsethiae has been isolated from infected cereals in central and northern Europe where it has been identified in the last decade as the main species involved in the occurrence of high levels of T-2 and HT-2 toxins, mainly in oats. The efficacy of three fungicides (prochloraz, tebuconazole, fenpropimorph) for controlling growth of two strains of F. langsethiae isolated from oats was examined at 0.96 and 0.98 a(w) at 15, 20 and 25 °C on oat-based media. The concentrations necessary for 50 and 90% growth inhibition (ED₅₀ and ED₉₀ values) were determined. The effect on the trichothecene type A mycotoxins T-2 and HT-2 was also determined. Without fungicides both strains grew faster at 0.98 than at 0.96 a(w) and the influence of temperature on growth rates was 25>20>15 °C. Prochloraz and tebuconazole were more effective than fenpropimorph against F. langsethiae. Strain, temperature and type of fungicide significantly influenced the ED₅₀ and ED₉₀ values for growth. The concentration ranges under different environmental conditions were: prochloraz (0.03-0.1 and 0.3-1.5), tebuconazole (0.06-0.9 and 1.3-8.2), and fenpropimorph (22-59 and 125-215 mg l⁻Âč). Production of T-2 and HT-2 toxins was influenced by temperature, a(w), type of fungicide and dose. Levels of T-2 were usually higher than those of HT- 2 under the same conditions. The biosynthesis of T-2 toxin increased after 10 day incubation, but was reduced with decreasing temperature and increasing fungicide dose. At 0.98 a(w) T-2 levels increased in cultures containing fenpropimorph while at 0.96 a(w) the toxin concentrations increased in response to the other two fungicides. Low doses of prochloraz or tebuconazole enhanced toxin production when compared with untreated cultures for strain 2004-59 at 0.96 a(w) and 20-25 °C. HT-2 was hardly detectable in the treatments with prochloraz or tebuconazole at 0.98 a(w). This is the first study on the effect of these anti-fungal compounds on control of growth of F. langsethiae and on production of T-2 and HT-2 tox

    Ochratoxin A removal in synthetic media by living and heat-inactivated cells of Oenococcus oeni isolated from wines

    Get PDF
    The capacity of Oenococcus oeni to eliminate ochratoxin A (OTA) from synthetic media in different conditions was studied. Ten tested O. oeni strains removed OTA from the medium but with significant differences depending on the strain, incubation period, and initial OTA level in the medium. Mycotoxin reductions higher than 60% were recorded in 14-day cultures spiked with 2 mu g OTA/l. Toxin removal was independent of bacterial viability and culture medium composition. This is the first study carried out to study OTA removal dynamics by living and heat-inactivated cells of O. oeni. The results aim that this bacterium may be a very useful tool to control OTA in food and beverages. (C) 2009 Elsevier Ltd. All rights reserved

    Different sample treatment approaches for the analysis of T-2 and HT-2 toxins from oats-based media

    Get PDF
    A LC-DAD method is proposed for the determination of the T-2 and HT-2 toxins in cultures of Fusarium langsethiae in oat-based and other in vitro media. Test media consisted of freshly prepared milled oats to which T-2 and HT-2 toxin stock solutions were added. Different mixtures of extraction solvent (acetonitrile:water and methanol water), extraction times (30', 60' or 90') and drying methods were investigated. Results showed that extraction with methanol: water (80:20, v/v) for 90 min, drying with N-2 and subsequent analysis by LC-DAD was the fastest and most user friendly method for detecting HT-2 and T-2 toxins production by F. langsethiae strains grown on oat-based media at levels of 0.459 and 0.508 mg of toxin/kg of agar, respectively. The proposed method was used to investigate toxin production of 6 F. langsethiae strains from northern Europe and provided clear chromatograms with no interfering peaks in media with and without glycerol as water activity modifier. (C) 2010 Elsevier B.V. All rights reserved

    On the dehydroindigo contribution to Maya Blue

    Full text link
    A series of data from voltammetric, spectral, and UPLC–MS and Py–GC–MS analyses of extracts from synthetic Maya Blue-type specimens provides evidence on the presence of a significant amount of dehydroindigo, identified on the basis of its MS, FTIR, and UV–Vis signatures, accompanying indigo and other minority compounds, supporting the view of this material as a complex polyfunctional organic–inorganic hybrid material. Estimates of dehydroindigo/indigo in-depth distribution and thermochemical data for the dye association to the clay from chromatographic and voltammetric data are provided.Financial support is gratefully acknowledged from the MICINN Projects CTQ2011-28079-CO3-01 and 02 which are also supported with ERDF funds.Domenech Carbo, A.; Domenech Carbo, MT.; Valle-Algarra, FM.; Domine, ME.; Osete Cortina, L. (2013). On the dehydroindigo contribution to Maya Blue. Journal of Materials Science. 48:7171-7183. https://doi.org/10.1007/s10853-013-7534-zS7171718348Merwin HE (1931) In: Morris HE, Charlot J, Morris AA (eds) Yucatan, Temple Warriors at Chitchen Itza. Carnegie Institution, Washington, DC, p 356Gettens RJ, Stout GL (eds) (1946) Paint materials: a short encyclopedia. Van Nostrand, New YorkReyes-Valerio C (1993) De Bonampak al Templo Mayor: el azul Maya en MesoamĂ©rica. Siglo XXI, MĂ©xicoRomero P, SĂĄnchez C (2005) New J Chem 29:57Shepard AO (1962) Am Antiq 27:565Gettens RJ (1962) Am Antiq 27:557Van Olphen H (1967) Science 154:645Cooksey CJ (2012) Biotech Histochem 87:439Kleber R, Masschelein-Kleiner R, Thissen J (1967) Stud Conservat 12:41JosĂ©-YacamĂĄn M, RendĂłn L, Arenas J, Serra-Puche MC (1996) Science 273:223FernĂĄndez ME, Ascencio JA, Mendoza-Anaya D, RodrĂ­guez-Lugo V, JosĂ©-YacamĂĄn M (1999) J Mater Sci 34:5243. doi: 10.1023/A:1004724316051Polette LA, Meitzner G, JosĂ©-YacamĂĄn M, Chianelli RR (2002) Microchem J 71:167Chiari G, Giustetto R, Ricchiardi G (2003) Eur J Mineral 15:21Hubbard B, Kuang W, Moser A, Facey GA, Detellier C (2003) Clays Clay Miner 51:318Fois E, Gamba A, Tilocca A (2003) Microporous Mesoporous Mater 57:263Reinen D, Köhl P, MĂŒller C (2004) Zeich Anorg Allgem Chem 630:97SĂĄnchez del RĂ­o M, Martinetto P, Somogyi A, Reyes-Valerio C, DooryhĂ©e E, Peltier N, Alianelli L, Moignard B, Pichon L, Calligaro T, Dran J-C (2004) Spectrochim Acta B 59:1619SĂĄnchez del Rio M, Sodo A, Eeckhout SG, Neisius T, Martinetto P, Dooryhee E, Reyes-Valerio C (2005) Nucl Instrum Methods Phys Res B 238:50Giustetto R, Llabres i Xamena FX, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) J Phys Chem B 109:19360Chianelli RR, Perez De la Rosa M, Meitzner G, Siadati M, Berhault G, Mehta A (2005) J Synchrotron Radiat 12:129Manciu FS, Reza L, Polette LA, Torres B, Chianelli RR (2007) J Raman Spectrosc 38:1193Polette-Niewold LA, Manciu FS, Torres B, Alvarado M, Chianelli RR (2007) J Inorg Biochem 101:1958Fuentes ME, Peña B, Contreras C, Montero AL, Chianelli R, Alvarado M, Olivas R, RodrĂ­guez LM, Camacho H, Montero-Cabrera LA (2008) Int J Quantum Chem 108:1664Chiari G, Giustetto R, Druzik J, Doehne E, Ricchiardi G (2008) Appl Phys A 90:3Tilocca A, Fois E (2009) J PhysChem C 113:8683SĂĄnchez del RĂ­o M, Boccaleri E, Milanesio M, Croce G, van Beek W, Tsiantos C (2009) J Mater Sci 44:5524. doi: 10.1007/s10853-009-3772-5SĂĄnchez del RĂ­o M, DomĂ©nech A, DomĂ©nech MT, VĂĄzquez ML, SuĂĄrez M, GarcĂ­a-Romero E (2011) Dev Clay Sci 3:453Mondelli C, Sanchez del Rio M, Gonzalez MA, MagazzĂș A, Cavalleri C, SuĂĄrez M, GarcĂ­a-Romero E, Romano P (2012) J Phys Conf Ser 340:012109Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry. A series of advances, vol 20. Marcel Dekker, New York, p 1Scholz F, Schröder U, Gulabowski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinDomĂ©nech A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609DomĂ©nech A, DomĂ©nech MT, VĂĄzquez ML (2006) J Phys Chem B 110:6027DomĂ©nech A, DomĂ©nech MT, VĂĄzquez ML (2007) J Phys Chem C 111:4585DomĂ©nech A, DomĂ©nech MT, VĂĄzquez ML (2007) Anal Chem 79:2812DomĂ©nech A, DomĂ©nech MT, VĂĄzquez ML (2009) Archaeometry 51:1015DomĂ©nech A, DomĂ©nech MT, SĂĄnchez del RĂ­o M, Goberna S, Lima E (2009) J Phys Chem C 113:12118DomĂ©nech A, DomĂ©nech MT, SĂĄnchez del RĂ­o M, VĂĄzquez ML (2009) J Solid State Electrochem 13:869DomĂ©nech A (2010) Electrochemistry of porous materials. Taylor & Francis, Boca RatonRondao R, De Melo JS, Bonifacio BD, Melo M (2010) J Phys Chem A 114:1699Giustetto R, Seenivasan K, Bonino F, Ricchiardi G, Bordiga S, Chierotti MR, Gobetto R (2011) J Phys Chem C 115:16764Tsiantos C, Tsampodimou M, Kacandes GH, SĂĄnchez del RĂ­o M, Gionis V, Chryssikos GD (2012) J Mater Sci 47:3415. doi: 10.1007/s10853-011-6189-xLima E, GuzmĂĄn A, Vera M, Rivera JL, Fraissard J (2012) J Phys Chem C 116:4556Sanz E, Arteaga A, GarcĂ­a MA, CĂĄmara C, Dietz C (2012) J Archaeol Sci 39:3516DomĂ©nech A, DomĂ©nech MT, SĂĄnchez del RĂ­o M, VĂĄzquez ML, Lima E (2009) New J Chem 33:2371Vandenabeele P, BodĂ© S, Alonso A, Moens L (2005) Spectrochim Acta A 61:2349DomĂ©nech A, DomĂ©nech MT, VĂĄzquez ML (2011) Angew Chem Int Ed 50:5741DomĂ©nech A, DomĂ©nech MT, Vidal C, VĂĄzquez ML (2012) Angew Chem Int Ed 51:700Giustetto R, Seenivasan K, Pellerej D, Ricchiardi G, Bordiga S (2012) Microporous Mesoporous Mater 155:167Kalb L (1909) Ber Dtsch Chem Ges 42:3642Klessinger M, Luettke W (1963) Tetrahedron 19(Suppl 2):315Hein M, Phuong NTB, Michalik D, Görls H, Lalk M, Langer P (2006) Tetrahedron Lett 47:5741Yasarawan N, van Duijneveldt JS (2008) Langmuir 24:7184DomĂ©nech A, DomĂ©nech M, Osete L, Montoya N (2013) Microporous Mesoporous Mater 2013(166):123PerpĂ©te EA, Preat J, AndrĂ© J-M, Jacquemin D (2006) J Phys Chem A 110:5629Diculescu VC, Kumbhat S, Oliveira-Brett AM (2006) Anal Chim Acta 575:190Wille E, LĂŒttke W (1973) Chem Ber 106:3240Seixas de Melo J, Moura AP, Melo MJ (2004) J Phys Chem A 108:6975Tatsch E, Schrader B (1995) J Raman Spectrosc 26:467SĂĄnchez del RĂ­o M, Picquart M, Haro-Poniatowski E, van Elslande E, Uc VH (2006) J Raman Spectrosc 37:1046Tomkinson J, Bacci M, Picollo M, Colognesi D (2009) Vib Spectrosc 50:268Bruneel JL, Lassegues JC, Sourisseau C (2002) J Raman Spectrosc 33:815Zheng W, Angelopoulos M, Epstein AJ, MacDiarmid AG (1997) Macromolecules 30:2953Trchova M, Stejskal J, Prokes J (1999) Synth Met 101:840Iwan A, Kaczmarczyk B, Janeczek H, Sek D, Ostrowski S (2007) Spectrochim Acta A 66:1030Fabbri D, Chiavari G, Ling H (2000) J Anal Appl Pyrolysis 56:167Chiavari G, Fabbri D, Prati S, Zappi A (2005) Chromatographia 61:403Casas MJ, DomĂ©nech MT (2005) Anal Bional Chem 382:259Gross JH (2004) Mass spectrometry. Springer, BerlinDomĂ©nech A, DomĂ©nech MT, VĂĄzquez ML (2007) J Solid State Electrochem 11:1335He JB, Ma G-H, Chen J-C, Yao Y, Wang Y (2010) Electrochim Acta 55:4845DomĂ©nech A, Martini M, De Carvalho L, DomĂ©nech MT (2012) J Electroanal Chem 684:1

    Redox Tuning and Species Distribution in Maya Blue-Type Materials: a reassessment

    Full text link
    Maya Blue-type specimens prepared from indigo (1 wt %) plus kaolinite, montmorillonite, palygorskite, sepiolite, and silicalite are studied. Liquid chromatography with diode array detection, ultra-performance liquid chromatography coupled with mass spectrometry, and pyrolysis-silylation gas chromatography-mass spectrometry analyses of the extracts from these specimens combined with spectral and solid-state voltammetry, electrochemical impedance spectroscopy, and scanning electrochemical microscopy techniques provide evidence for the presence of a significant amount of dehydroindigo and isatin accompanying indigo and other minority organic compounds in all samples. Solid-state electrochemistry data permits the estimatation of indigo loading in archeological Maya Blue, which is in the range of 0.2 to 1.5 wt %. These results support a view of 'genuine' Maya Blue-type materials as complex polyfunctional organic-inorganic hybrids.Financial support is gratefully acknowledged from the MICINN, projects CTQ2011-28079-CO3-01 and 02, which are also supported with ERDF funds.Domenech Carbo, A.; Valle-Algarra, FM.; Domenech Carbo, MT.; Domine, ME.; Osete Cortina, L.; Gimeno Adelantado, JV. (2013). Redox Tuning and Species Distribution in Maya Blue-Type Materials: a reassessment. ACS Applied Materials and Interfaces. 5(16):8134-8145. https://doi.org/10.1021/am402193uS8134814551
    corecore